Crop metabolomics: from diagnostics to assisted breeding
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdelrahman, M., Burritt, D. J., & Tran, L. P. (2017) The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses. In Seminars in Cell & Developmental Biology. Cambridge: Academic Press
Aflitos, S., Schijlen, E., de Jong, H., de Ridder, D., Smit, S., Finkers, R., Wang, J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B., Huits, H., Struss, D., Swanson-Wagner, R., van Leeuwen, H., van Ham, R. C., Fito, L., Guignier, L., Sevilla, M., Ellul, P., Ganko, E., Kapur, A., Reclus, E., de Geus, B., van de Geest, H., Hekkert, T. L., van Haarst, B., Smits, J., Koops, L., Sanchez-Perez, A., van Heusden, G., Visser, A. W., Quan, R., Min, Z., Liao, J., Wang, L., Wang, X., Yue, G., Yang, Z., Xu, X., Schranz, N., Smets, E., Vos, E., Rauwerda, R., Ursem, J., Schuit, R., Kerns, C., van den Berg, M., Vriezen, J., Janssen, W., Datema, A., Jahrman, E., Moquet, T., Bonnet, F., J. and Peters, S. (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. The Plant Journal: For Cell and Molecular Biology, 80, 136–148.
Ahmad, R., Jamil, S., Shahzad, M., Zörb, C., Irshad, U., Khan, N., et al. (2017). Metabolic profiling to elucidate genetic elements due to salt stress. Clean - Soil, Air, Water. https://doi.org/10.1002/clen.201600574.
Ainalidou, A., Tanou, G., Belghazi, M., Samiotaki, M., Diamantidis, G., Molassiotis, A., & Karamanoli, K. (2016). Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. Journal of Proteomics, 143, 318–333.
Albrecht, U., Fiehn, O., & Bowman, K. (2016). Metabolic variations in different citrus rootstock cultivars associated with different responses to Huanglongbing. Plant Physiol Biochem, 107, 33–44.
Alseekh, S., & Fernie, A. R. (2018). Metabolomics 20 years on: What have we learned and what hurdles remain? The Plant Journal: For Cell and Molecular Biology, 94, 933–942.
Amiour, N., Imbaud, S., Clement, G., Agier, N., Zivy, M., Valot, B., Balliau, T., Armengaud, P., Quillere, I., Canas, R., Tercet-Laforgue, T., & Hirel, B. (2012). The use of metabolomics integrated with transcriptomic and proteomic studies for identifying key steps involved in the control of nitrogen metabolism in crops such as maize. Journal of Experimental Botany, 63, 5017–5033.
Bai, C., Twyman, R. M., Farré, G., Sanahuja, G., Christou, P., Capell, T., & Zhu, C. (2011). A golden era-pro-vitamin A enhancement in diverse crops. In Vitro Cellular and Developmental Biology—Plant. https://doi.org/10.1007/s11627-011-9363-6.
Baldina, S., Picarella, M. E., Troise, A. D., Pucci, A., Ruggieri, V., Ferracane, R., Barone, A., Fogliano, V., & Mazzucato, A. (2016). Metabolite profiling of italian tomato landraces with different fruit types. Frontiers in Plant Science, 7, 664.
Beatty, P., Klein, M., Fischer, J., Lewis, I., Muench, D., & Good, A. (2016). Understanding plant nitrogen metabolism through metabolomics and computational approaches. Plants, 5(4), 39. https://doi.org/10.3390/plants5040039.
Benard, C., Bernillon, S., Biais, B., Osorio, S., Maucourt, M., Ballias, P., Deborde, C., Colombie, S., Cabasson, C., Jacob, D., Vercambre, G., Gautier, H., Rolin, D., Genard, M., Fernie, A. R., Gibon, Y., & Moing, A. (2015). Metabolomic profiling in tomato reveals diel compositional changes in fruit affected by source-sink relationships. Journal of Experimental Botany, 66, 3391–3404.
Benevenuto, R. F., Agapito-Tenfen, S. Z., Vilperte, V., Wikmark, O. G., van Rensburg, P. J., & Nodari, R. O. (2017). Molecular responses of genetically modified maize to abiotic stresses as determined through proteomic and metabolomic analyses. PLoS ONE, 12, e0173069.
Bino, R. J., Hall, R. D., Fiehn, O., Kopka, J., Saito, K., Draper, J., et al. (2004). Potential of metabolomics as a functional genomics tool. Trends in Plant Science, 9(9), 418–425. https://doi.org/10.1016/j.tplants.2004.07.004.
Bolger, A., Scossa, F., Bolger, M. E., Lanz, C., Maumus, F., Tohge, T., Quesneville, H., Alseekh, S., Sorensen, I., Lichtenstein, G., Fich, E. A., Conte, M., Keller, H., Schneeberger, K., Schwacke, R., Ofner, I., Vrebalov, J., Xu, Y., Osorio, S., Aflitos, S. A., Schijlen, E., Jimenez-Gomez, J. M., Ryngajllo, M., Kimura, S., Kumar, R., Koenig, D., Headland, L. R., Maloof, J. N., Sinha, N., van Ham, R. C., Lankhorst, R. K., Mao, L., Vogel, A., Arsova, B., Panstruga, R., Fei, Z., Rose, J. K., Zamir, D., Carrari, F., Giovannoni, J. J., Weigel, D., Usadel, B., & Fernie, A. R. (2014). The genome of the stress-tolerant wild tomato species Solanum pennellii. Nature Genetics, 46, 1034–1038.
Bucher, R., Veyel, D., Willmitzer, L., Krattinger, S., Keller, B., & Bigler, L. (2017). Combined GC- and UHPLC-HR-MS based metabolomics to analyze durable anti-fungal resistance processes in cereals. CHIMIA International Journal for Chemistry, 71(4), 156–159. https://doi.org/10.2533/chimia.2017.156.
Cai, G., Yang, Q., Chen, H., Yang, Q., Zhang, C., Fan, C., & Zhou, Y. (2016). Genetic dissection of plant architecture and yield-related traits in Brassica napus. Scientific Reports, 6, 21625. https://doi.org/10.1038/srep21625.
Cañas, R. A., Yesbergenova-Cuny, Z., Simons, M., Chardon, F., Armengaud, P., Quillere, I., Cukier, C., Gibon, Y., Limami, A. M., Nicolas, S., Brule, L., Lea, P. J., Maranas, C. D., & Hirel, B. (2017). Exploiting the genetic diversity of maize using a combined metabolomic, enzyme activity profiling, and metabolic modeling approach to link leaf physiology to kernel yield. The Plant Cell, 29, 919–943.
Cebulj, A., Cunja, V., Mikulic-Petkovsek, M., & Veberic, R. (2017). Importance of metabolite distribution in apple fruit. Scientia Horticulturae, 214, 214–220.
Chambers, A. H., Pillet, J., Plotto, A., Bai, J., Whitaker, V. M., & Folta, K. M. (2014). Identification of a strawberry flavor gene candidate using an integrated genetic-genomic-analytical chemistry approach. BMC Genomics, 15, 217. https://doi.org/10.1186/1471-2164-15-217.
Chen, W., Gao, Y., Xie, W., Gong, L., Lu, K., Wang, W., Li, Y., Liu, X., Zhang, H., Dong, H., Zhang, W., Zhang, L., Yu, S., Wang, G., Lian, X., & Luo, J. (2014). Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nature Genetics, 46, 714–721.
Chrobok, D., Law, S. R., Brouwer, B., Linden, P., Ziolkowska, A., Liebsch, D., Narsai, R., Szal, B., Moritz, T., Rouhier, N., Whelan, J., Gardestrom, P., & Keech, O. (2016). Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiology, 172, 2132–2153.
Copley, T. R., Duggavathi, R., & Jabaji, S. (2017). The transcriptional landscape of Rhizoctonia solani AG1-IA during infection of soybean as defined by RNA-sEq. PLoS ONE, 12, e0184095.
Cortina, P. R., Santiago, A. N., Sance, M. M., Peralta, I. E., Carrari, F., & Asis, R. (2018). Neuronal network analyses reveal novel associations between volatile organic compounds and sensory properties of tomato fruits. Metabolomics, 14, 57.
Cuadros-Inostroza, A., Giavalisco, P., Hummel, J., Eckardt, A., Willmitzer, L., & Pena-Cortes, H. (2010). Discrimination of wine attributes by metabolome analysis. Analytical Chemistry, 82, 3573–3580.
D’Angelo, M., Zanor, M. I., Sance, M., Cortina, P. R., Boggio, S. B., Asprelli, P., Carrari, F., Santiago, A. N., Asis, R., Peralta, I. E., & Valle, E. M. (2018). Contrasting metabolic profiles of tasty Andean varieties of tomato fruit in comparison with commercial ones. Journal of the Science of Food and Agriculture, 98, 4128–4134.
Davies, K. M., & Espley, R. V. (2013). Opportunities and challenges for metabolic engineering of secondary metabolite pathways for improved human health characters in fruit and vegetable crops. New Zealand Journal of Crop and Horticultural Science, 41(3), 154–177. https://doi.org/10.1080/01140671.2013.793730.
Desnoues, E., Gibon, Y., Baldazzi, V., Signoret, V., Génard, M., & Quilot-Turion, B. (2014). Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios. BMC Plant Biology, 14(1), 336. https://doi.org/10.1186/s12870-014-0336-x-.
Di Paola Naranjo, R. D., Otaiza, R. D., Saragusti, S., Baroni, A. C., Carranza, V., Peralta, AdelV., I. E., et al (2016). Hydrophilic antioxidants from Andean tomato landraces assessed by their bioactivities in vitro and in vivo. Food Chemistry, 206, 146–155. https://doi.org/10.1016/j.foodchem.2016.03.027.
Diepenbrock, C. H., Kandianis, C. B., Lipka, A. E., Magallanes-Lundback, M., Vaillancourt, B., Gongora-Castillo, E., Wallace, J. G., Cepela, J., Mesberg, A., Bradbury, P. J., Ilut, D. C., Mateos-Hernandez, M., Hamilton, J., Owens, B. F., Tiede, T., Buckler, E. S., Rocheford, T., Buell, C. R., Gore, M. A., & DellaPenna, D. (2017). Novel loci underlie natural variation in vitamin E levels in maize grain. The Plant Cell, 29, 2374–2392.
Domingos, S., Fino, J., Cardoso, V., Sanchez, C., Ramalho, J. C., Larcher, R., Paulo, O. S., Oliveira, C. M., & Goulao, L. F. (2016). Shared and divergent pathways for flower abscission are triggered by gibberellic acid and carbon starvation in seedless Vitis vinifera L. BMC Plant Biology, 16, 38.
FAO. Food and Agriculture Organisation. (2009). How to feed the world in 2050. Insights from an Expert Meeting at FAO, 2050(1), 1–35. https://doi.org/10.1111/j.1728-4457.2009.00312.x.
FAO. Food and Agriculture Organisation. (2017). The future of food and agriculture: Trends and challenges. http://www.fao.org/3/a-i6583e.pdf.
Feng, J., Long, Y., Shi, L., Shi, J., Barker, G., & Meng, J. (2012). Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. The New Phytologist, 193, 96–108.
Flamini, R., De Rosso, M., & Bavaresco, L. (2015) Study of grape polyphenols by liquid chromatography-high-resolution mass spectrometry (UHPLC/QTOF) and suspect screening analysis. Journal of Analytical Methods in Chemistry, 2015, 350259.
Freund, D. M., & Hegeman, A. D. (2017). Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Current Opinion in Biotechnology, 43, 41–48.
Fukushima, A., & Kusano, M. (2014). A network perspective on nitrogen metabolism from model to crop plants using integrated “omics” approaches. Journal of Experimental Botany, 65(19), 5619–5630. https://doi.org/10.1093/jxb/eru322.
Garbowicz, K., Liu, Z., Alseekh, S., Tieman, D., Taylor, M., Kuhalskaya, A., Ofner, I., Zamir, D., Klee, H. J., Fernie, A. R., & Brotman, Y. (2018) Quantitative trait loci analysis identifies a prominent gene involved in the production of fatty-acid-derived flavor volatiles in tomato. Molecular Plant. S1674-2052(18)30190-4.
Gargallo-Garriga, A., Ayala-Roque, M., Sardans, J., Bartrons, M., Granda, V., Sigurdsson, B. D., Leblans, N. I. W., Oravec, M., Urban, O., Janssens, I. A., & Penuelas, J. (2017) Impact of soil warming on the plant metabolome of icelandic grasslands. Metabolites, 7.
Ghaffari, M. R., Shahinnia, F., Usadel, B., Junker, B., Schreiber, F., Sreenivasulu, N., & Hajirezaei, M. R. (2016). The metabolic signature of biomass formation in barley. Plant & Cell Physiology, 57, 1943–1960.
Gong, L., Chen, W., Gao, Y., Liu, X., Zhang, H., Xu, C., Yu, S., Zhang, Q., & Luo, J. (2013). Genetic analysis of the metabolome exemplified using a rice population. Proceedings of the National Academy of Sciences of the United States of America, 110, 20320–20325.
Harrigan, G. G., Venkatesh, T. V., Leibman, M., Blankenship, J., Perez, T., Halls, S., Chassy, A. W., Fiehn, O., Xu, Y., & Goodacre, R. (2016). Evaluation of metabolomics profiles of grain from maize hybrids derived from near-isogenic GM positive and negative segregant inbreds demonstrates that observed differences cannot be attributed unequivocally to the GM trait. Metabolomics, 12, 82.
Hatoum, D., Annaratone, C., Hertog, M.L.A.T.M., Geeraerd, A. H., & Nicolai, B. M. (2014). Targeted metabolomics study of ‘Braeburn’ apples during long-term storage. Postharvest Biology and Technology, 96, 33–41.
Hatoum, D., Hertog, M. L. A. T. M., Geeraerd, A. H., & Nicolai, B. M. (2016). Effect of browning related pre- and postharvest factors on the ‘Braeburn’ apple metabolome during CA storage. Postharvest Biology and Technology, 111, 106–116. https://doi.org/10.1016/j.postharvbio.2015.08.004.
Hu, C., Shi, J., Quan, S., Cui, B., Kleessen, S., Nikoloski, Z., Tohge, T., Alexander, D., Guo, L., Lin, H., Wang, J., Cui, X., Rao, J., Luo, Q., Zhao, X., Fernie, A. R., & Zhang, D. (2014). Metabolic variation between japonica and indica rice cultivars as revealed by non-targeted metabolomics. Scientific Reports, 4, 5067.
Hu, C., Tohge, T., Chan, S.-A., Song, Y., Rao, J., Cui, B., et al. (2016). Identification of conserved and diverse metabolic shifts during rice grain development. Scientific Reports, 6, 20942. https://doi.org/10.1038/srep20942.
Jiang, K., Liberatore, K. L., Park, S. J., Alvarez, J. P., & Lippman, Z. B. (2013). Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genetics, 9, e1004043. https://doi.org/10.1371/journal.pgen.1004043.
Justes, E., Mary, B., & Meynard, J. M. (1997). Evaluation of a nitrate test indicator to improve the nitrogen fertilisation of winter wheat crops, diagnostic procedures for crop N management. Proceedings of a workshop held in Poitiers, France, 22–23 November, 1995 Paris, France. Institut National de la Recherche Agronomique (INRA) (pp. 93–110).
Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., Sung, D. Y., & Guy, C. L. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.
Kelly, G., Moshelion, M., David-Schwartz, R., Halperin, O., Wallach, R., Attia, Z., Belausov, E., & Granot, D. (2013). Hexokinase mediates stomatal closure. The Plant Journal: For Cell and Molecular Biology, 75, 977–988.
Kim, J. M., To, T. K., Matsui, A., Tanoi, K., Kobayashi, N. I., Matsuda, F., Habu, Y., Ogawa, D., Sakamoto, T., Matsunaga, S., Bashir, K., Rasheed, S., Ando, M., Takeda, H., Kawaura, K., Kusano, M., Fukushima, A., Endo, T. A., Kuromori, T., Ishida, J., Morosawa, T., Tanaka, M., Torii, C., Takebayashi, Y., Sakakibara, H., Ogihara, Y., Saito, K., Shinozaki, K., Devoto, A., & Seki, M. (2017). Acetate-mediated novel survival strategy against drought in plants. Nature Plants, 3, 17097.
Kong, L., Xie, Y., Hu, L., Si, J., & Wang, Z. (2017). Excessive nitrogen application dampens antioxidant capacity and grain filling in wheat as revealed by metabolic and physiological analyses. Scientific Reports, 7, 43363.
Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cellular and Molecular Biology (Noisy-le-Grand, France), 53(1), 15–25.
Kumar, R., Bohra, A., Pandey, A. K., Pandey, M. K., & Kumar, A. (2017). Metabolomics for plant improvement: Status and prospects. Frontiers in Plant Science, 8, 1302.
Kusano, M., Fukushima, A., Kobayashi, M., Hayashi, N., Jonsson, P., Moritz, T., Ebana, K., & Saito, K. (2007). Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 855, 71–79.
Kusano, M., Yang, Z., Okazaki, Y., Nakabayashi, R., Fukushima, A., & Saito, K. (2015). Using metabolomic approaches to explore chemical diversity in rice. Molecular Plant, 8, 58–67.
Lakshmanan, M., Lim, S.-H., Mohanty, B., Kim, J. K., Ha, S.-H., & Lee, D.-Y. (2015). Unraveling the light-specific metabolic and regulatory signatures of rice through combined in silico modeling and multi-omics analysis. Plant Physiology, 169, 01379. https://doi.org/10.1104/pp.15.01379. 2015.
Lancien, M., Gadal, P., & Hodges, M. (2000). Enzyme redundancy and the importance of 2-oxoglutarate in higher plant ammonium assimilation. Plant Physiology, 123(3), 817–824. https://doi.org/10.1104/pp.123.3.817.
Li, B., Zhang, Y., Mohammadi, S. A., Huai, D., Zhou, Y., & Kliebenstein, D. J. (2016a). An integrative genetic study of rice metabolism, growth and stochastic variation reveals potential C/N partitioning loci. Scientific Reports, 6, 30143.
Li, M., Li, D., Feng, F., Zhang, S., Ma, F., & Cheng, L. (2016b). Proteomic analysis reveals dynamic regulation of fruit development and sugar and acid accumulation in apple. Journal of Experimental Botany, 67, 5145–5157.
Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., Zhang, Z., Lun, Y., Li, S., Wang, X., Huang, Z., Li, J., Zhang, C., Wang, T., Zhang, Y., Wang, A., Zhang, Y., Lin, K., Li, C., Xiong, G., Xue, Y., Mazzucato, A., Causse, M., Fei, Z., Giovannoni, J. J., Chetelat, R. T., Zamir, D., Stadler, T., Li, J., Ye, Z., Du, Y., & Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46, 1220–1226.
Lipka, A. E., Gore, M. A., Magallanes-Lundback, M., Mesberg, A., Lin, H., Tiede, T., Chen, C., Buell, C. R., Buckler, E. S., Rocheford, T., & DellaPenna, D. (2013) Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain. G3 (Bethesda, Md.), 3, 1287–1299.
Lisec, J., Romisch-Margl, L., Nikoloski, Z., Piepho, H. P., Giavalisco, P., Selbig, J., Gierl, A., & Willmitzer, L. (2011). Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns. The Plant Journal: For Cell and Molecular Biology, 68, 326–336.
Liu, M. Y., Burgos, A., Ma, L., Zhang, Q., Tang, D., & Ruan, J. (2017). Lipidomics analysis unravels the effect of nitrogen fertilization on lipid metabolism in tea plant (Camellia sinensis L.). BMC Plant Biology, 17, 165.
Llorente, B., Alonso, G. D., Bravo-Almonacid, F., Rodriguez, V., Lopez, M. G., Carrari, F., Torres, H. N., & Flawia, M. M. (2011). Safety assessment of nonbrowning potatoes: Opening the discussion about the relevance of substantial equivalence on next generation biotech crops. Plant Biotechnology Journal, 9, 136–150.
López, M. G., Zanor, M. I., Pratta, G. R., Stegmayer, G., Boggio, S. B., Conte, M., Bermúdez, L., Leskow, C., Rodríguez, C., Picardi, G. R., Zorzoli, L. A., Fernie, R., Milone, A. R., Asís, D., Valle, R., E.M. and Carrari, F. (2015). Metabolic analyses of interspecific tomato recombinant inbred lines for fruit quality improvement. Metabolomics, 11, 1416–1431.
Matsuda, F., Okazaki, Y., Oikawa, A., Kusano, M., Nakabayashi, R., Kikuchi, J., Yonemaru, J., Ebana, K., Yano, M., & Saito, K. (2012). Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis. The Plant Journal: For Cell and Molecular Biology, 70, 624–636.
Meyer, R. C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Torjek, O., Fiehn, O., Eckardt, A., Willmitzer, L., Selbig, J., & Altmann, T. (2007). The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 104, 4759–4764.
Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Weber, N., Veberic, R., Stampar, F., Munda, A., & Koron, D. (2013). Alteration of the content of primary and secondary metabolites in strawberry fruit by Colletotrichum nymphaeae infection. Journal of Agricultural and Food Chemistry, 61, 5987–5995.
Misra, B. B., Acharya, B. R., Granot, D., Assmann, S. M., & Chen, S. (2015). The guard cell metabolome: Functions in stomatal movement and global food security. Frontiers in Plant Science, 6, 334.
Misra, B. B., Assmann, S. M., & Chen, S. (2014). Plant single-cell and single-cell-type metabolomics. Trends in Plant Science, 19, 637–646.
Misyura, M., Guevara, D., Subedi, S., Hudson, D., McNicholas, P. D., Colasanti, J., & Rothstein, S. J. (2014). Nitrogen limitation and high density responses in rice suggest a role for ethylene under high density stress. BMC Genomics, 15, 681.
Moghissi, A. A., Pei, S., & Liu, Y. (2016). Golden rice: Scientific, regulatory and public information processes of a genetically modified organism. Critical Reviews in Biotechnology. https://doi.org/10.3109/07388551.2014.993586.
Moschen, S., Di Rienzo, J. A., Higgins, J., Tohge, T., Watanabe, M., Gonzalez, S., Rivarola, M., Garcia-Garcia, F., Dopazo, J., Hopp, H. E., Hoefgen, R., Fernie, A. R., Paniego, N., Fernandez, P., & Heinz, R. A. (2017). Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.). Plant Molecular Biology, 94, 549–564.
Nagpala, E. G., Guidarelli, M., Gasperotti, M., Masuero, D., Bertolini, P., Vrhovsek, U., & Baraldi, E. (2016). Polyphenols variation in fruits of the susceptible strawberry cultivar alba during ripening and upon fungal pathogen interaction and possible involvement in unripe fruit tolerance. Journal of Agricultural and Food Chemistry, 64(9), 1869–1878. https://doi.org/10.1021/acs.jafc.5b06005.
Nakabayashi, R., & Saito, K. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology, 24, 10–16.
Nardozza, S., Boldingh, H. L., Osorio, S., Hohne, M., Wohlers, M., Gleave, A. P., MacRae, E. A., Richardson, A. C., Atkinson, R. G., Sulpice, R., Fernie, A. R., & Clearwater, M. J. (2013). Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. Journal of Experimental Botany, 64, 5049–5063.
Nielsen, L. J., Stuart, P., Picmanova, M., Rasmussen, S., Olsen, C. E., Harholt, J., Moller, B. L., & Bjarnholt, N. (2016). Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genomics, 17, 1021.
Obata, T., & Fernie, A. R. (2012). The use of metabolomics to dissect plant responses to abiotic stresses. Cellular and Molecular Life Sciences: CMLS, 69, 3225–3243.
Obata, T., Witt, S., Lisec, J., Palacios-Rojas, N., Florez-Sarasa, I., Yousfi, S., Araus, J. L., Cairns, J. E., & Fernie, A. R. (2015). Metabolite profiles of maize leaves in drought, heat, and combined stress field trials reveal the relationship between metabolism and grain yield. Plant Physiology, 169, 2665–2683.
Ogawa, T., Kashima, K., Yuki, Y., Mejima, M., Kurokawa, S., Kuroda, M., Okazawa, A., Kiyono, H., & Ohta, D. (2017). Seed metabolome analysis of a transgenic rice line expressing cholera toxin B-subunit. Scientific Reports, 7, 5196.
Ogbaga, C. C., Stepien, P., Dyson, B. C., Rattray, N. J., Ellis, D. I., Goodacre, R., & Johnson, G. N. (2016). Biochemical analyses of sorghum varieties reveal differential responses to drought. PLoS ONE, 11, e0154423.
Oikawa, A., Otsuka, T., Nakabayashi, R., Jikumaru, Y., Isuzugawa, K., Murayama, H., Saito, K., & Shiratake, K. (2015). Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLoS ONE, 10, e0131408.
Okazaki, Y., Otsuki, H., Narisawa, T., Kobayashi, M., Sawai, S., Kamide, Y., Kusano, M., Aoki, T., Hirai, M. Y., & Saito, K. (2013). A new class of plant lipid is essential for protection against phosphorus depletion. Nature Communications, 4, 1510.
Okazaki, Y., & Saito, K. (2016). Integrated metabolomics and phytochemical genomics approaches for studies on rice. GigaScience, 5, 11.
Owens, B. F., Lipka, A. E., Magallanes-Lundback, M., Tiede, T., Diepenbrock, C. H., Kandianis, C. B., Kim, E., Cepela, J., Mateos-Hernandez, M., Buell, C. R., Buckler, E. S., DellaPenna, D., Gore, M. A., & Rocheford, T. (2014). A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics, 198, 1699–1716.
Pan, Z., Zeng, Y., An, J., Ye, J., Xu, Q., & Deng, X. (2012). An integrative analysis of transcriptome and proteome provides new insights into carotenoid biosynthesis and regulation in sweet orange fruits. Journal of Proteomics, 75, 2670–2684.
Patrick, J. W., Botha, F. C., & Birch, R. G. (2013). Metabolic engineering of sugars and simple sugar derivatives in plants. Plant Biotechnology Journal. https://doi.org/10.1111/pbi.12002.
Peng, M., Ying, P., Liu, X., Li, C., Xia, R., Li, J., & Zhao, M. (2017). Genome-wide identification of histone modifiers and their expression patterns during fruit abscission in litchi. Frontiers in Plant Science, 8, 639.
Perez-Fons, L., Wells, T., Corol, D. I., Ward, J. L., Gerrish, C., Beale, M. H., Seymour, G. B., Bramley, P. M., & Fraser, P. D. (2014). A genome-wide metabolomic resource for tomato fruit from Solanum pennellii. Scientific Reports, 4, 3859.
Powell, J. P., & Reinhard, S. (2016). Measuring the effects of extreme weather events on yields. Weather and Climate Extremes, 12, 69–79. https://doi.org/10.1016/j.wace.2016.02.003.
Pretty, J., & Bharucha, Z. P. (2014). Sustainable intensification in agricultural systems. Annals of Botany, 114(8), 1571–1596. https://doi.org/10.1093/aob/mcu205.
Price, E. J., Bhattacharjee, R., Lopez-Montes, A., & Fraser, P. D. (2017). Metabolite profiling of yam (Dioscorea spp.) accessions for use in crop improvement programmes. Metabolomics, 13, 144.
Qi, X., Xu, W., Zhang, J., Guo, R., Zhao, M., Hu, L., Wang, H., Dong, H., & Li, Y. (2017). Physiological characteristics and metabolomics of transgenic wheat containing the maize C4 phosphoenolpyruvate carboxylase (PEPC) gene under high temperature stress. Protoplasma, 254, 1017–1030.
Quadrana, L., Almeida, J., Asis, R., Duffy, T., Dominguez, P. G., Bermudez, L., Conti, G., Correa da Silva, J. V., Peralta, I. E., Colot, V., Asurmendi, S., Fernie, A. R., Rossi, M., & Carrari, F. (2014). Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications, 5, 3027.
Quan, X., Zeng, J., Han, Z., & Zhang, G. (2017). Ionomic and physiological responses to low nitrogen stress in Tibetan wild and cultivated barley. Plant Physiology and Biochemistry, 111, 257–265. https://doi.org/10.1016/j.plaphy.2016.12.008.
Ramalingam, A., Kudapa, H., Pazhamala, L. T., Weckwerth, W., & Varshney, R. K. (2015). Proteomics and metabolomics: Two emerging areas for legume improvement. Frontiers in Plant Science, 6, 1116.
Ranjbar Sistani, N., Kaul, H. P., Desalegn, G., & Wienkoop, S. (2017) Rhizobium impacts on seed productivity, quality, and protection of Pisum sativum upon disease stress caused by Didymella pinodes: Phenotypic, proteomic, and metabolomic traits. Frontiers in Plant Science, 8, 1961.
Rao, J., Cheng, F., Hu, C., Quan, S., Lin, H., Wang, J., Chen, G., Zhao, X., Alexander, D., Guo, L., Wang, G., Lai, J., Zhang, D., & Shi, J. (2014). Metabolic map of mature maize kernels. Metabolomics, 10, 775–787.
Raun, W., Solie, J. B., Johnson, G. V., Stone, M., Mullen, R. W., Freeman, K. W., Thomason, W., & Lukina, E. V. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.
Redestig, H., Kusano, M., Ebana, K., Kobayashi, M., Oikawa, A., Okazaki, Y., Matsuda, F., Arita, M., Fujita, N., & Saito, K. (2011). Exploring molecular backgrounds of quality traits in rice by predictive models based on high-coverage metabolomics. BMC Systems Biology, 5, 176.
Riedelsheimer, C., Czedik-Eysenberg, A., Grieder, C., Lisec, J., Technow, F., Sulpice, R., et al. (2012a). Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nature Genetics, 44(2), 217–220. https://doi.org/10.1038/ng.1033.
Riedelsheimer, C., Lisec, J., Czedik-Eysenberg, A., Sulpice, R., Flis, A., Grieder, C., Altmann, T., Stitt, M., Willmitzer, L., & Melchinger, A. E. (2012b). Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences of the United States of America, 109, 8872–8877.
Rossi, M., Bermudez, L., & Carrari, F. (2015). Crop yield: Challenges from a metabolic perspective. Current Opinion in Plant Biology, 25, 79–89.
Safronov, O., Kreuzwieser, J., Haberer, G., Alyousif, M. S., Schulze, W., Al-Harbi, N., Arab, L., Ache, P., Stempfl, T., Kruse, J., Mayer, K. X., Hedrich, R., Rennenberg, H., Salojarvi, J., & Kangasjarvi, J. (2017). Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm). PLoS ONE, 12, e0177883.
Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., Fernie, A. R., & Causse, M. (2014). Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiology, 165, 1120–1132.
Sayre, R., Beeching, J. R., Cahoon, E. B., Egesi, C., Fauquet, C., Fellman, J., et al. (2011). The BioCassava plus program: Biofortification of cassava for sub-saharan Africa. Annual Review of Plant Biology. https://doi.org/10.1146/annurev-arplant-042110-103751.
Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., Pleban, T., Zamir, D., & Fernie, A. R. (2008). Mode of inheritance of primary metabolic traits in tomato. The Plant Cell, 20, 509–523.
Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., Pleban, T., Perez-Melis, A., Bruedigam, C., Kopka, J., Willmitzer, L., Zamir, D., & Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24, 447–454.
Shelden, M. C., Dias, D. A., Jayasinghe, N. S., Bacic, A., & Roessner, U. (2016). Root spatial metabolite profiling of two genotypes of barley (Hordeum vulgare L.) reveals differences in response to short-term salt stress. Journal of Experimental Botany, 67, 3731–3745.
Shen, Q., Fu, L., Dai, F., Jiang, L., Zhang, G., & Wu, D. (2016). Multi-omics analysis reveals molecular mechanisms of shoot adaption to salt stress in Tibetan wild barley. BMC Genomics, 17, 889.
Shimojima, M., Madoka, Y., Fujiwara, R., Murakawa, M., Yoshitake, Y., Ikeda, K., Koizumi, R., Endo, K., Ozaki, K., & Ohta, H. (2015). An engineered lipid remodeling system using a galactolipid synthase promoter during phosphate starvation enhances oil accumulation in plants. Frontiers in Plant Science, 6, 664.
Son, H.-S., Hwang, G.-S., Kim, K. M., Ahn, H.-J., Park, W.-M., Van Den Berg, F., et al. (2009). Metabolomic studies on geographical grapes and their wines using 1H NMR analysis coupled with multivariate statistics. Journal of Agricultural and Food Chemistry, 57(4), 1481–1490. https://doi.org/10.1021/jf803388w.
Sonawane, P. D., Pollier, J., Panda, S., Szymanski, J., Massalha, H., Yona, M., Unger, T., Malitsky, S., Arendt, P., Pauwels, L., Almekias-Siegl, E., Rogachev, I., Meir, S., Cardenas, P. D., Masri, A., Petrikov, M., Schaller, H., Schaffer, A. A., Kamble, A., Giri, A. P., Goossens, A., & Aharoni, A. (2016). Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nature Plants, 3, 16205.
Sonnewald, U., & Fernie, A. R. (2018). Next-generation strategies for understanding and influencing source-sink relations in crop plants. Current Opinion in Plant Biology, 43, 63–70.
Stitt, M., & Schulze, D. (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant, Cell & Environment, 17, 465–487. https://doi.org/10.1111/j.1365-3040.1994.tb00144.x.
Stoop, J. M. H., Williamson, J. D., & Mason Pharr, D. (1996). Mannitol metabolism in plants: A method for coping with stress. Trends in Plant Science, 1, 139–144.
Sun, M., Yang, Z., & Wawrik, B. (2018). Metabolomic fingerprints of individual algal cells using the single-probe mass spectrometry technique. Frontiers in Plant Science, 9, 571.
Sweetlove, L. J., Beard, K. F., Nunes-Nesi, A., Fernie, A. R., & Ratcliffe, R. G. (2010). Not just a circle: Flux modes in the plant TCA cycle. Trends in Plant Science, 15, 462–470.
Tatsis, E. C., & O’Connor, S. E. (2016). New developments in engineering plant metabolic pathways. Current Opinion in Biotechnology. https://doi.org/10.1016/j.copbio.2016.04.012.
The Tomato Genome Consortium. (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485, 635–641.
Tieman, D., Zhu, G., Resende, M. F. Jr., Lin, T., Nguyen, C., Bies, D., Rambla, J. L., Beltran, K. S., Taylor, M., Zhang, B., Ikeda, H., Liu, Z., Fisher, J., Zemach, I., Monforte, A., Zamir, D., Granell, A., Kirst, M., Huang, S., & Klee, H. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355, 391–394.
Tohge, T., & Fernie, A. R. (2015). Metabolomics-inspired insight into developmental, environmental and genetic aspects of tomato fruit chemical composition and quality. Plant & Cell Physiology, 56, 1681–1696.
Tohge, T., Scossa, F., & Fernie, A. R. (2015). Integrative approaches to enhance understanding of plant metabolic pathway structure and regulation. Plant Physiology, 169(3), 1499–1511.
Topfer, N., Kleessen, S., & Nikoloski, Z. (2015). Integration of metabolomics data into metabolic networks. Frontiers in Plant Science, 6, 49.
Turner, M., Heuberger, A., Kirkwood, J., Collins, C., Wolfrum, C., Broeckling, E., Prenni, C., J. and Jahn, C. (2016). Non-targeted metabolomics in diverse sorghum breeding lines indicates primary and secondary metabolite profiles are associated with plant biomass accumulation and photosynthesis. Frontiers in Plant Science, 7, 953.
Tuttle, J. R., Nah, G., Duke, M. V., Alexander, D. C., Guan, X., Song, Q., et al. (2015). Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics, 16(1), 1–28. https://doi.org/10.1186/s12864-015-1708-9.
Uddling, J., Gelang-Alfredsson, J., Karlsson, P. E., Selldén, G., & Pleijel, H. (2008). Source–sink balance of wheat determines responsiveness of grain production to increased [CO2] and water supply. Agriculture, Ecosystems and Environment, 127, 215–222.
Upadhyaya, P., Tyagi, K., Sarma, S., Tamboli, V., Sreelakshmi, Y., & Sharma, R. (2017). Natural variation in folate levels among tomato (Solanum lycopersicum) accessions. Food Chemistry, 217, 610–619. https://doi.org/10.1016/j.foodchem.2016.09.031.
Venkatesh, T. V., Chassy, A. W., Fiehn, O., Flint-Garcia, S., Zeng, Q., Skogerson, K., & Harrigan, G. G. (2016). Metabolomic assessment of key maize resources: GC-MS and NMR profiling of grain from B73 hybrids of the nested association mapping (NAM) founders and of geographically diverse landraces. Journal of Agricultural and Food Chemistry, 64, 2162–2172.
Vimolmangkang, S., Zheng, H., Peng, Q., Jiang, Q., Wang, H., Fang, T., et al. (2016). Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. Journal of Agricultural and Food Chemistry, 64(35), 6723–6729. https://doi.org/10.1021/acs.jafc.6b02159.
Vital, C. E., Giordano, A., de Almeida Soares, E., Williams, R., Mesquita, T. C., Vidigal, R. O., de Santana Lopes, P. M. P., Pacheco, A., Rogalski, T. G., M., de O. Ramos, H.J. and Loureiro, M. E. (2017). An integrative overview of the molecular and physiological responses of sugarcane under drought conditions. Plant Molecular Biology, 94, 577–594.
Wang, H., Xu, S., Fan, Y., Liu, N., Zhan, W., Liu, H., Xiao, Y., Li, K., Pan, Q., Li, W., Deng, M., Liu, J., Jin, M., Yang, X., Li, J., Li, Q., & Yan, J. (2018). Beyond pathways: Genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnology Journal, 16, 1464–1475.
Wang, X., Zhu, W., Hashiguchi, A., Nishimura, M., Tian, J., & Komatsu, S. (2017). Metabolic profiles of flooding-tolerant mechanism in early-stage soybean responding to initial stress. Plant Molecular Biology, 94, 669–685.
Wen, W., Jin, M., Li, K., Liu, H., Xiao, Y., Zhao, M., Alseekh, S., Li, W., de Abreu, E. L. F., Brotman, Y., Willmitzer, L., Fernie, A. R., & Yan, J. (2018). An integrated multi-layered analysis of the metabolic networks of different tissues uncovers key genetic components of primary metabolism in maize. The Plant Journal: For Cell and Molecular Biology, 93, 1116–1128.
Wen, W., Li, K., Alseekh, S., Omranian, N., Zhao, L., Zhou, Y., Xiao, Y., Jin, M., Yang, N., Liu, H., Florian, A., Li, W., Pan, Q., Nikoloski, Z., Yan, J., & Fernie, A. R. (2015). Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. The Plant Cell, 27, 1839–1856.
Xu, S., Xu, Y., Gong, L., & Zhang, Q. (2016). Metabolomic prediction of yield in hybrid rice. The Plant Journal: For Cell and Molecular Biology, 88, 219–227.
Yang, F., Xu, X., Wang, W., Ma, J., Wei, D., He, P., Pampolino, M. F., & Johnston, A. M. (2017). Estimating nutrient uptake requirements for soybean using QUEFTS model in China. PLoS ONE, 12, e0177509.
Yang, X., Feng, L., Zhao, L., Liu, X., Hassani, D., & Huang, D. (2018). Effect of glycine nitrogen on lettuce growth under soilless culture: A metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism. Journal of the Science of Food and Agriculture, 98, 467–477.
Yang, X., Nian, J., Xie, Q., Feng, J., Zhang, F., Jing, H., Zhang, J., Dong, G., Liang, Y., Peng, J., Wang, G., Qian, Q., & Zuo, J. (2016). Rice ferredoxin-dependent glutamate synthase regulates nitrogen-carbon metabolomes and is genetically differentiated between japonica and indica subspecies. Molecular Plant, 9, 1520–1534.
Ye, X., & Beyer, P. (2000). Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science. https://doi.org/10.1126/science.287.5451.303.
Yesbergenova-Cuny, Z., Dinant, S., Martin-Magniette, M. L., Quillere, I., Armengaud, P., Monfalet, P., Lea, P. J., & Hirel, B. (2016). Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. Plant Science: An International Journal of Experimental Plant Biology, 252, 347–357.
Ying, J. Z., Shan, J. X., Gao, J. P., Zhu, M. Z., Shi, M., & Lin, H. X. (2012). Identification of quantitative trait Loci for lipid metabolism in rice seeds. Molecular Plant, 5, 865–875.
Yonekura-Sakakibara, K., & Saito, K. (2006). Review: Genetically modified plants for the promotion of human health. Biotechnology Letters. https://doi.org/10.1007/s10529-006-9194-4.
Zhang, J., Luo, W., Zhao, Y., Xu, Y., Song, S., & Chong, K. (2016). Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice. The New Phytologist, 211, 1295–1310.
Zhang, N., Venkateshwaran, M., Boersma, M., Harms, A., Howes-Podoll, M., den Os, D., Ane, J. M., & Sussman, M. R. (2012). Metabolomic profiling reveals suppression of oxylipin biosynthesis during the early stages of legume-rhizobia symbiosis. FEBS Letters, 586, 3150–3158.
Zhang, Y., Butelli, E., Alseekh, S., Tohge, T., Rallapalli, G., Luo, J., et al. (2015). Multi-level engineering facilitates the production of phenylpropanoid compounds in tomato. Nature Communications. https://doi.org/10.1038/ncomms9635.
Zhao, Y., Li, Z., Liu, G., Jiang, Y., Maurer, H. P., Wurschum, T., Mock, H. P., Matros, A., Ebmeyer, E., Schachschneider, R., Kazman, E., Schacht, J., Gowda, M., Longin, C. F., & Reif, J. C. (2015). Genome-based establishment of a high-yielding heterotic pattern for hybrid wheat breeding. Proceedings of the National Academy of Sciences of the United States of America, 112, 15624–15629.
Zhu, G., Wang, S., Huang, Z., Zhang, S., Liao, Q., Zhang, C., Lin, T., Qin, M., Peng, M., Yang, C., Cao, X., Han, X., Wang, X., van der Knaap, E., Zhang, Z., Cui, X., Klee, H., Fernie, A. R., Luo, J., & Huang, S. (2018). Rewiring of the fruit metabolome in tomato breeding. Cell, 172, 249–261.e212.