Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Đánh giá có tính chất phê bình về ứng dụng của biochar trong hạ tầng kỹ thuật địa chất: tiến xa hơn các quan điểm nông nghiệp và môi trường
Biomass Conversion and Biorefinery - Trang 1-29 - 2021
Tóm tắt
Biochar có nhiều lợi ích rộng rãi và được sử dụng phổ biến trong nhiều lĩnh vực đa chiều, bao gồm nông học, quản lý môi trường và kỹ thuật địa chất. Bài đánh giá hiện tại nhằm thảo luận về ứng dụng đã được thiết lập và các ứng dụng tương lai có thể của biochar như một phụ gia đất trong các ứng dụng kỹ thuật địa chất (slope xanh, lớp lót bãi rác). Để đánh giá vai trò của biochar trong kỹ thuật địa chất, khoảng 180 nghiên cứu đã được chọn ngẫu nhiên từ năm 1996 đến năm 2020. Kỹ thuật snowball đã được sử dụng để thu thập các tài liệu nghiên cứu và thông số. Mục tiêu chính là phân tích các khoảng trống quan trọng trong nghiên cứu về việc sử dụng biochar trong các ứng dụng kỹ thuật địa chất nhằm ổn định đất. Đã quan sát thấy rằng quá trình sản xuất và ứng dụng biochar vẫn còn bị giới hạn trong phòng thí nghiệm và cần có nghiên cứu ở quy mô lớn hơn. Có những quan sát mâu thuẫn liên quan đến các thuộc tính khác nhau của biochar, ví dụ, việc thêm biochar làm tăng khả năng giữ nước của đất, nhưng một số nhà nghiên cứu đã đưa ra ý kiến trái ngược. Hơn nữa, các yếu tố ổn định của các sườn bãi rác như sức chịu cắt, khả năng nén và sức kéo cũng chưa được làm rõ. Chi phí hiệu quả của sản xuất và ứng dụng biochar cũng là một mối quan tâm lớn. Nghiên cứu trong tương lai cần được tiến hành để giải quyết các tác động tiêu cực của biochar, chẳng hạn như độ bền và hiệu quả lâu dài. Thêm vào đó, việc ứng dụng in-situ của biochar trong các loại đất kỹ thuật nén cần được điều tra. Cần thiết phải xây dựng các hướng dẫn sơ bộ để chọn lựa tỷ lệ biochar phù hợp và tối ưu với các thông số cụ thể cần thiết cho việc áp dụng trong hạ tầng kỹ thuật xanh. Đã phát hiện ra rằng còn thiếu thông tin về tính khả dụng và các thuộc tính của nguyên liệu sinh khối làm đầu vào, hiệu quả chi phí của việc chuẩn bị, ứng dụng và tuổi thọ của biochar so với các phương pháp thay thế khác trong việc ổn định đất.
Từ khóa
Tài liệu tham khảo
Xu R, Qafoku NP, Van Ranst E, Li J, Jiang J (2016) Chapter one—adsorption properties of subtropical and tropical variable charge soils: implications from climate change and biochar amendment. In: Sparks DL (ed) Advances in Agronomy, Advances in Agronomy, vol 135. Academic Press, pp 1–58
Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review. Biol Fertil Soils 35:219–230. https://doi.org/10.1007/s00374-002-0466-4
De Bhowmick G, Sarmah AK, Sen R (2018) Production and characterization of a value added biochar mix using seaweed, rice husk and pine sawdust: a parametric study. J Clean Prod 200:641–656. https://doi.org/10.1016/j.jclepro.2018.08.002
Aj C, Na P, de Nys R, Roberts D (2017) Good for sewage treatment and good for agriculture: algal based compost and biochar. J Environ Manag 200:105–113. https://doi.org/10.1016/j.jenvman.2017.05.082
Kumar S, Masto RE, Ram LC, Sarkar P, George J, Selvi VA (2013) Biochar preparation from parthenium hysterophorus and its potential use in soil application. Ecol Eng 55:67–72. https://doi.org/10.1016/j.ecoleng.2013.02.011
Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013) Biochar from water hyacinth (Eichornia Crassipes) and its impact on soil biological activity. CATENA 111:64–71. https://doi.org/10.1016/j.catena.2013.06.025
Ouyang L, Wang F, Tang J, Yu L, Zhang R (2013) Effects of biochar amendment on soil aggregates and hydraulic properties. J Soil Sci Plant Nutr 13:991–1002. https://doi.org/10.4067/S0718-95162013005000078
Ahmad T, Belwal T, Li L, Ramola S, Aadil RM, Abdullah, Xu Y, Zisheng L (2020) Utilization of wastewater from edible oil industry, turning waste into valuable products: a review. Trends Food Sci Technol 99:21–33. https://doi.org/10.1016/j.tifs.2020.02.017
Ramola S, Mishra T, Rana G, Srivastava RK (2014) Characterization and pollutant removal efficiency of biochar derived from baggase, bamboo and tyre. Environ Monit Assess 186:9023–9039. https://doi.org/10.1007/s10661-014-4062-5
Ramola S, Belwal T, Li CJ, Wang YY, Lu HH, Yang SM, Zhou CH (2020) Improved lead removal from aqueous solution using novel porous bentonite - and calcite-biochar composite. Sci Total Environ 709:136171. https://doi.org/10.1016/j.scitotenv.2019.136171
Chen X-W, Wong JT-F, Ng CW-W, Wong M-H (2016) Feasibility of biochar application on a landfill final cover—a review on balancing ecology and shallow slope stability. Environ Sci Pollut Res 23:7111–7125. https://doi.org/10.1007/s11356-015-5520-5
Atkinson CJ, Fitzgerald JD, Hipps NA (2010) Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337:1–18. https://doi.org/10.1007/s11104-010-0464-5
Dugan B, Liu Z, Masiello CA, Gonnermann HM, Nittrouer JA (2015) Effect of freeze-thaw cycles on grain size of biochar. AGU Fall Meeting Abstracts 21:B21B–B0427B
Libra JA; Ro KS; Kammann C; Funke A; Berge ND; Neubauer Y; Titirici M-M; Fühner C; Bens O; Kern J; Emmerich K (2011) Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis.
Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2007) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45:629. https://doi.org/10.1071/SR07109
Major J, Rondon M, Riha S, Lehmann J, Major J, Rondon M, Molina D, Riha SJ, Lehmann J (2010) Maize Yield and nutrition during 4 years after biochar application to a Colombian Savanna Oxisol. Plant Soil 333:117–128. https://doi.org/10.1007/s11104-010-0327-0
Steiner C, Glaser B, Teixeira WG, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171:893–899. https://doi.org/10.1002/jpln.200625199
Van Zwieten L, Kimber S, Morris S, Chan KY, Downie A, Rust J, Joseph S, Cowie A (2010) Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant Soil 327:235–246. https://doi.org/10.1007/s11104-009-0050-x
Lehmann J, Joseph S (2015) Biochar for environmental management: science, technology and implementation. Routledge ISBN 978-1-134-48953-4
Glaser B, Haumaier L, Guggenberger G, Zech W (2001) The “Terra Preta” phenomenon: a model for sustainable agriculture in the humid tropics. Naturwissenschaften 88:37–41. https://doi.org/10.1007/s001140000193
da Costa ML, Kern DC (1999) Geochemical signatures of tropical soils with archaeological black earth in the Amazon, Brazil. J Geochem Explor 66:369–385. https://doi.org/10.1016/S0375-6742(99)00038-2
Ogawa M, Okimori Y (2010) Pioneering Works in Biochar Research, Japan. Soil Res 48:489. https://doi.org/10.1071/SR10006
Doan TT, Henry-des-Tureaux T, Rumpel C, Janeau J-L, Jouquet P (2015) Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: a three year mesocosm experiment. Sci Total Environ 514:147–154. https://doi.org/10.1016/j.scitotenv.2015.02.005
Jiang J, Xu R, Jiang T, Li Z (2012) Immobilization of Cu(II), Pb(II) and Cd(II) by the addition of rice straw derived biochar to a simulated polluted ultisol. J Hazard Mater 229–230:145–150. https://doi.org/10.1016/j.jhazmat.2012.05.086
Ramola S, Kumar Srivastava R, Vasudevan P (2013) Effect of biochar application in combination with domestic wastewater on biomass yield of bioenergy plantations. Int J Energy Sector Manag 7:355–363. https://doi.org/10.1108/IJESM-03-2013-0005
Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004
Wani I, Kumar H, Rangappa SM, Peng L, Siengchin S, Kushvaha V (2021) Multiple regression model for predicting cracks in soil amended with pig manure biochar and wood biochar. J Hazard Toxic Radioact Waste 25:04020061. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000561.
Ramola S; Belwal T; Srivastava DR (2020) Thermochemical conversion of biomass waste-based biochar for environment remediation. pp. 1–16 ISBN:978-3-030-11155-7.
Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227. https://doi.org/10.1038/ngeo156
Singh B, Singh BP, Cowie AL (2010) Characterisation and evaluation of biochars for their application as a soil amendment. Soil Res 48:516. https://doi.org/10.1071/SR10058
Garg A, Reddy NG, Huang H, Buragohain P, Kushvaha V (2020) Modelling contaminant transport in fly ash–bentonite composite landfill liner: mechanism of different types of ions. Sci Rep 10:11330. https://doi.org/10.1038/s41598-020-68198-6
Choi WC, Yun HD, Lee JY (2012) Mechanical properties of mortar containing bio-char from pyrolysis. J Korea Instit Struct Maintenan Inspect 16:67–74. https://doi.org/10.11112/jksmi.2012.16.3.067
Gupta S, Kua HW (2017) Factors determining the potential of biochar as a carbon capturing and sequestering construction material: critical review. J Mater Civ Eng 29:04017086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001924
Asada T, Ishihara S, Yamane T, Toba A, Yamada A, Oikawa K (2002) Science of bamboo charcoal: study on carbonizing temperature of bamboo charcoal and removal capability of harmful gases. J Health Sci 48:473–479. https://doi.org/10.1248/jhs.48.473
Khushnood RA, Ahmad S, Restuccia L, Spoto C, Jagdale P, Tulliani J-M, Ferro GA (2016) Carbonized nano/microparticles for enhanced mechanical properties and electromagnetic interference shielding of cementitious materials. Front Struct Civ Eng 10:209–213. https://doi.org/10.1007/s11709-016-0330-5
Zhao MY, Enders A, Lehmann J (2014) Short- and long-term flammability of biochars. Biomass Bioenergy 69:183–191. https://doi.org/10.1016/j.biombioe.2014.07.017
Suarez-Riera D, Restuccia L, Ferro GA (2020) The use of biochar to reduce the carbon footprint of cement-based materials. Procedia Struct Integrity 26:199–210. https://doi.org/10.1016/j.prostr.2020.06.023
Gupta S, Kua HW, Low CY (2018) Use of biochar as carbon sequestering additive in cement mortar. Cem Concr Compos 87:110–129. https://doi.org/10.1016/j.cemconcomp.2017.12.009
Chebil S, Chaala A, Roy C (2000) Use of softwood bark charcoal as a modifier for road bitumen. Fuel 79:671–683. https://doi.org/10.1016/S0016-2361(99)00196-9
Walters RC, Fini EH, Abu-Lebdeh T (2014) Enhancing asphalt rheological behavior and aging susceptibility using bio-char and nano-clay. Am J Eng Appl Sci 7:66–76. https://doi.org/10.3844/ajeassp.2014.66.76
Zhao S, Huang B, Shu X, Ye P (2014) Laboratory investigation of biochar-modified asphalt mixture. Transp Res Rec 2445:56–63. https://doi.org/10.3141/2445-07
Zhao S, Huang B, Ye XP, Shu X, Jia X (2014) Utilizing bio-char as a bio-modifier for asphalt cement: a sustainable application of bio-fuel by-product. Fuel 133:52–62. https://doi.org/10.1016/j.fuel.2014.05.002
Liu S, Su Z, Li M, Shao L (2020) Slope stability analysis using elastic finite element stress fields. Eng Geol 273:105673. https://doi.org/10.1016/j.enggeo.2020.105673
Reddy KR, Yaghoubi P, Yukselen-Aksoy Y (2015) Effects of biochar amendment on geotechnical properties of landfill cover soil. Waste Manag Res 33:524–532. https://doi.org/10.1177/0734242X15580192
Wu Z, Chen C, Lu X, Pei L, Zhang L (2020) Discussion on the allowable safety factor of slope stability for high rockfill dams in China. Eng Geol 272:105666. https://doi.org/10.1016/j.enggeo.2020.105666
Yaghoubi P (2012) Development of biochar-amended landfill cover for landfill gas mitigation. thesis, University of Illinois at Chicago.
Pardo G, Sarmah A, Orense R (2018) Mechanism of improvement of biochar on shear strength and liquefaction resistance of sand. Géotechnique 69:1–31. https://doi.org/10.1680/jgeot.17.p.040
Zong Y, Xiao Q, Lu S (2016) Acidity, water retention, and mechanical physical quality of a strongly acidic ultisol amended with biochars derived from different feedstocks. J Soils Sediments 16:177–190. https://doi.org/10.1007/s11368-015-1187-2
Wallace CA, Afzal MT, Saha GC (2019) Effect of feedstock and microwave pyrolysis temperature on physio-chemical and nano-scale mechanical properties of biochar. Bioresourc Bioprocess 6:33. https://doi.org/10.1186/s40643-019-0268-2
GuhaRay A, Guoxiong M, Sarkar A, Bordoloi S, Garg A, Pattanayak S (2019) Geotechnical and chemical characterization of expansive clayey soil amended by biochar derived from invasive weed species prosopis Juliflora. Innov Infrastruct Solut 4:44. https://doi.org/10.1007/s41062-019-0231-2
Bordoloi S, Garg A, Sreedeep S, Lin P, Mei G (2018) Investigation of cracking and water availability of soil-biochar composite synthesized from invasive weed water hyacinth. Bioresour Technol 263:665–677. https://doi.org/10.1016/j.biortech.2018.05.011
Garg A, Huang H, Kushvaha V, Madhushri P, Kamchoom V, Wani I, Koshy N, Zhu H-H (2019) Mechanism of biochar soil pore–gas–water interaction: gas properties of biochar-amended sandy soil at different degrees of compaction using KNN modeling. Acta Geophys. https://doi.org/10.1007/s11600-019-00387-y
Gopal P, Bordoloi S, Ratnam R, Lin P, Cai W, Buragohain P, Garg A, Sreedeep S (2019) Investigation of infiltration rate for soil-biochar composites of water hyacinth. Acta Geophys 67:231–246. https://doi.org/10.1007/s11600-018-0237-8
Garg A, Bordoloi S, Ni J, Cai W, Maddibiona PG, Mei G, Poulsen TG, Lin P (2019) Influence of Biochar Addition on Gas Permeability in Unsaturated Soil. Géotechn Lett 9:66–71. https://doi.org/10.1680/jgele.18.00190
Sadasivam BY, Reddy KR (2015) Engineering properties of waste wood-derived biochars and biochar-amended soils. Int J Geotech Eng 9:521–535. https://doi.org/10.1179/1939787915Y.0000000004
Wani I, Sharma A, Kushvaha V, Madhushri P, Peng L (2020) Effect of PH, volatile content, and pyrolysis conditions on surface area and O/C and H/C ratios of biochar: towards understanding performance of biochar using simplified approach. J Hazard Toxic Radioact Waste 24:04020048. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000545
Jyoti Bora M, Bordoloi S, Kumar H, Gogoi N, Zhu H-H, Sarmah AK, Sreeja P, Sreedeep S, Mei G (2020) Influence of biochar from animal and plant origin on the compressive strength characteristics of degraded landfill surface soils. Int J Damage Mechan 1056789520925524. https://doi.org/10.1177/1056789520925524
Huang H, Cai W-L, Zheng Q, Chen P-N, Huang C-R, Zeng Q-J, Kumar H, Zhu H-H, Garg A, Zheenbek K, Kushvaha V (2020) Gas permeability in soil amended with biochar at different compaction states. IOP Conf Ser: Earth Environ Sci 463:012073. https://doi.org/10.1088/1755-1315/463/1/012073
Cao CTN, Farrell C, Kristiansen PE, Rayner JP (2014) Biochar makes green roof substrates lighter and improves water supply to plants. Ecol Eng 71:368–374
Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity – results from a short-term pilot field study. Agric Ecosyst Environ 140(1–2):309–313
Lu H, Zhang W, Wang S, Zhuang L, Yang Y, Qiu R (2013) Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures. J Anal Appl Pyrolysis 102:137–143
Lu S-G, Sun F-F, Zong Y-T (2014) Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (vertisol). CATENA 114:37–44
Malik Z, Yutong Z, ShengGao L, Abassi GH, Ali S, khan MI, Kamran M, Jamil M, Al-Wabel MI, Rizwan M (2018) Effect of biochar and quicklime on growth of wheat and physicochemical properties of Ultisols. Arab J Geosci 11(17)
Sarma B, Farooq M, Gogoi N, Borkotoki B, Kataki R, Garg A (2018) Soil organic carbon dynamics in wheat - green gram crop rotation amended with vermicompost and biochar in combination with inorganic fertilizers: a comparative study. J Clean Prod 201:471–480
Shah T, Khan S, Shah Z (2017) Soil respiration, pH and EC as influenced by biochar. Soil Environ 36(01):77–83
Ulyett J, Sakrabani R, Kibblewhite M, Hann M (2014) Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils. Eur J Soil Sci 65(1):96–104
Wong JTF, Chen Z, Wong AYY, Ng CWW, Wong MH (2018) Effects of biochar on hydraulic conductivity of compacted kaolin clay. Environ Pollut 234:468–472
Zong Y, Chen D, Lu S (2014) Impact of biochars on swell-shrinkage behavior, mechanical strength, and surface cracking of clayey soil. J Plant Nutr Soil Sci 177(6):920–926
Zaman CZ; Pal K; Yehye WA; Suresh S; Shah ST; Adebisi GA; EmyMarliana; Rafique RF; Johan RB (2017) Pyrolysis: a sustainable way to Generate energy from waste.
Bharath KN, Madhu P, Gowda TGY, Sanjay MR, Kushvaha V, Siengchin S (2020) Alkaline effect on characterization of discarded waste of moringa oleifera fiber as a potential eco-friendly reinforcement for biocomposites. J Polym Environ 28:2823–2836. https://doi.org/10.1007/s10924-020-01818-4
Hussain R, Garg A, Ravi K (2020) Soil-biochar-plant interaction: differences from the perspective of engineered and agricultural soils. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-020-01846-3
Liu Z, Dugan B, Masiello CA, Barnes RT, Gallagher ME, Gonnermann H (2016) Impacts of biochar concentration and particle size on hydraulic conductivity and DOC leaching of biochar–sand mixtures. J Hydrol 533:461–472. https://doi.org/10.1016/j.jhydrol.2015.12.007
Bordoloi S, Wang Wai Ng C (2020) The effects of vegetation traits and their stability functions in bio-engineered slopes: a perspective review. Eng Geol 275:105742. https://doi.org/10.1016/j.enggeo.2020.105742
Bordoloi S, Gopal P, Boddu R, Wang Q, Cheng Y-F, Garg A, Sreedeep S (2019) Soil-biochar-water interactions: role of biochar from eichhornia crassipes in influencing crack propagation and suction in unsaturated soils. J Clean Prod 210:847–859. https://doi.org/10.1016/j.jclepro.2018.11.051
Jindo K, Mizumoto H, Sawada Y, Sanchez-Monedero MA, Sonoki T (2014) Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11:6613–6621. https://doi.org/10.5194/bg-11-6613-2014
Lei O, Zhang R (2013) Effects of biochars derived from different feedstocks and pyrolysis temperatures on soil physical and hydraulic properties. J Soils Sediments 13:1561–1572. https://doi.org/10.1007/s11368-013-0738-7
Alburquerque JA, Calero JM, Barrón V, Torrent J, del Campillo MC, Gallardo A, Villar R (2014) Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J Plant Nutr Soil Sci 177:16–25. https://doi.org/10.1002/jpln.201200652
Bagreev A, Adib F, Bandosz TJ PH of activated carbon surface as an indication of its suitability for H2S removal from moist air streams. Carbon 2001:1897–1905. https://doi.org/10.1016/S0008-6223(00)00317-1
James RAM, Yuan W, Wang D, Wang D, Kumar A (2020) The effect of gasification conditions on the surface properties of biochar produced in a top-lit updraft gasifier. Appl Sci 10:688. https://doi.org/10.3390/app10020688
Ippolito JA, Spokas KA, Novak JM, Lentz RD, Cantrell KB (2015) Biochar elemental composition and factors influencing nutrient retention. In: Lehmann J, Joseph S (eds) Biochar for Envrionmental Management: Science, technolody and Implementation, 2nd edn. Routledge, pp 137–161 ISBN 978-0-415-70415-1
Jafri N, Wong WY, Doshi V, Yoon LW, Cheah KH (2018) A review on production and characterization of biochars for application in direct carbon fuel cells. Process Saf Environ Prot 118:152–166. https://doi.org/10.1016/j.psep.2018.06.036
Tomczyk A, Sokołowska Z, Boguta P (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev Environ Sci Biotechnol 19:191–215. https://doi.org/10.1007/s11157-020-09523-3
Liu W-J, Jiang H, Yu H-Q (2015) Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem Rev 115:12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
Li S, Lyons-Hart J, Banyasz J, Shafer K (2001) Real-time evolved gas analysis by FTIR method: an experimental study of cellulose pyrolysis. Fuel 80:1809–1817. https://doi.org/10.1016/S0016-2361(01)00064-3
Ronsse F, Bai X, Prins W, Brown RC (2012) Secondary reactions of levoglucosan and char in the fast pyrolysis of cellulose. Environ Prog Sustain Energy 31:256–260. https://doi.org/10.1002/ep.11633
Tag AT, Duman G, Ucar S, Yanik J (2016) Effects of feedstock type and pyrolysis temperature on potential applications of biochar. J Anal Appl Pyrolysis 120:200–206. https://doi.org/10.1016/j.jaap.2016.05.006
Sun Y, Gao B, Yao Y, Fang J, Zhang M, Zhou Y, Chen H, Yang L (2014) Effects of Feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem Eng J 240:574–578. https://doi.org/10.1016/j.cej.2013.10.081
McBeath AV, Smernik RJ, Krull ES, Lehmann J (2014) The influence of feedstock and production temperature on biochar carbon chemistry: a solid-state 13C NMR study. Biomass Bioenergy 60:121–129. https://doi.org/10.1016/j.biombioe.2013.11.002
Abel S, Peters A, Trinks S, Schonsky H, Facklam M, Wessolek G (2013) Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma 202–203:183–191. https://doi.org/10.1016/j.geoderma.2013.03.003
Kong S-H, Loh S-K, Bachmann RT, Rahim SA, Salimon J (2014) Biochar from oil palm biomass: a review of its potential and challenges. Renew Sust Energ Rev 39:729–739. https://doi.org/10.1016/j.rser.2014.07.107
Ren, S.; Lei, H.; Wang, L.; Bu, Q.; Chen, S.; Wu, J.Q. (2014) Hydrocarbon and hydrogen-rich syngas production by biomass catalytic pyrolysis and bio-oil upgrading over biochar catalysts.
Ahmedna M, Marshall WE, Husseiny AA, Rao RM (2004) The use of nutshell carbons in drinking water filters for removal of trace metals. 38:1062–1068. https://doi.org/10.1016/j.watres.2003.10.047
Ding W, Dong X, Mandu I, Gao B, Ma LQ (2014) Chemosphere pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere 105:68–74. https://doi.org/10.1016/j.chemosphere.2013.12.042
Cetin E, Moghtaderi B, Gupta R, Wall TF (2004) Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83:2139–2150. https://doi.org/10.1016/j.fuel.2004.05.008
Melligan F, Auccaise R, Novotny EH, Leahy JJ, Hayes MHB, Kwapinski W (2011) Pressurised pyrolysis of miscanthus using a fixed bed reactor. Bioresour Technol 102:3466–3470. https://doi.org/10.1016/j.biortech.2010.10.129
Antal MJ, Croiset E, Dai X, DeAlmeida C, Mok WS-L, Norberg N, Richard J-R, Al Majthoub M (1996) High-yield biomass charcoal. Energy Fuel 10:652–658. https://doi.org/10.1021/ef9501859
Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954. https://doi.org/10.1021/es301029g
Michael Jerry Antal, J.; Mok, W.S.L.; Varhegyi, G.; Szekely, T. Review of methods for improving the yield of charcoal from biomass available online: https://doi.org/10.1021/ef00021a001 (accessed on 25 April 2020).
Yaman S (2004) Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers Manag 45:651–671. https://doi.org/10.1016/S0196-8904(03)00177-8
Di Blasi C, Signorelli G, Di Russo C, Rea G (1999) Product distribution from pyrolysis of wood and agricultural residues. Ind Eng Chem Res 38:2216–2224. https://doi.org/10.1021/ie980711u
Manyà JJ, Ruiz J, Arauzo J (2007) Some peculiarities of conventional pyrolysis of several agricultural residues in a packed bed reactor. Ind Eng Chem Res 46:9061–9070. https://doi.org/10.1021/ie070811c
Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical midwestern agricultural soil. Geoderma 158:443–449. https://doi.org/10.1016/j.geoderma.2010.05.013
Yanik J, Kornmayer C, Saglam M, Yüksel M (2007) Fast pyrolysis of agricultural wastes: characterization of pyrolysis products. Fuel Process Technol 88:942–947. https://doi.org/10.1016/j.fuproc.2007.05.002
Zhang L, Xu C (2010) (Charles); Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982. https://doi.org/10.1016/j.enconman.2009.11.038
Antal MJ, Mochidzuki K, Paredes LS (2003) Flash carbonization of biomass. Ind Eng Chem Res 42:3690–3699. https://doi.org/10.1021/ie0301839
Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production. Ind Eng Chem Res 42:1619–1640. https://doi.org/10.1021/ie0207919
Brewer CE, Schmidt-Rohr K, Satrio JA, Brown RC (2009) Characterization of biochar from fast pyrolysis and gasification systems. Environ Prog Sustain Energy 28:386–396. https://doi.org/10.1002/ep.10378
Demirbaş A Partly Chemical analysis of liquid fraction of flash pyrolysis products from biomass in the presence of sodium carbonate. Energy Convers Manag 2002:43, 1801–1809. https://doi.org/10.1016/S0196-8904(01)00137-6
Fernandes MB, Brooks P (2003) Characterization of carbonaceous combustion residues: II. Nonpolar Organic Compounds. Chemosphere 53:447–458. https://doi.org/10.1016/S0045-6535(03)00452-1
Methods for producing biochar and advanced biofuels in Washington State. 150.
Sakhiya AK, Anand A, Kaushal P (2020) Production, activation, and applications of biochar in recent times. Biochar 2:253–285. https://doi.org/10.1007/s42773-020-00047-1
Architects, W.M (1992) The Hannover principles: design for sustainability : prepared for EXPO 2000, the World’s Fair, Hannover, Germany; W. McDonough Architects
Kammen, D.; Lew, D. (2005) Review of technologies for the production and use of charcoal. renewable and appropriate energy laboratory report, energy and resources group & Goldman School of Public Policy
Vochozka M, Maroušková A, Váchal J, Straková J (2016) Biochar pricing hampers biochar farming. Clean Techn Environ Policy 18:1225–1231. https://doi.org/10.1007/s10098-016-1113-3
Maroušek J Significant breakthrough in biochar cost reduction. Clean Techn Environ Policy 2014, 16:1821–1825. https://doi.org/10.1007/s10098-014-0730-y
Rajabi Hamedani S, Kuppens T, Malina R, Bocci E, Colantoni A, Villarini M (2019) Life cycle assessment and environmental valuation of biochar production: two case studies in Belgium. Energies 12:2166. https://doi.org/10.3390/en12112166
Johnsen FM, Løkke S (2013) Review of criteria for evaluating LCA weighting methods. Int J Life Cycle Assess 18:840–849. https://doi.org/10.1007/s11367-012-0491-y
Finnveden, G. (1999) (Stockholm U. (Sweden) F. foer M.S. A critical review of operational valuation/weighting methods for life cycle assessment. Survey. AFR-report (Sweden)
Azzi ES, Karltun E, Sundberg C (2019) Prospective life cycle assessment of large-scale biochar production and use for negative emissions in Stockholm. Environ Sci Technol 53:8466–8476. https://doi.org/10.1021/acs.est.9b01615
Kammann, C.; Ippolito, J.A.; Hagemann, N.; Borchard, N.; Cayuela, M.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Jeffery, S.; Kern, J.; Novak, J.; Rasse, D.; Saarnio, S.; Schmidt, H.-P.; Spokas, K.; Wrage - Monnig, N. Biochar as a tool to reduce the agricultural greenhouse-gas burden—knowns, unknowns and future research needs available online: https://www.cifor.org/knowledge/publication/6533/ (accessed on 3 January 2021).
Joseph S, Pow D, Dawson K, Mitchell DRG, Rawal A, Hook J, Taherymoosavi S, Van Zwieten L, Rust J, Donne S, Munroe P, Pace B, Graber E, Thomas T, Nielsen S, Ye J, Lin Y, Pan G, Li L, Solaiman, Zakaria M (2015) Feeding biochar to cows: an innovative solution for improving soil fertility and farm productivity. Pedosphere 25:666–679. https://doi.org/10.1016/S1002-0160(15)30047-3
Matuštík J, Hnátková T, Kočí V (2020) Life Cycle Assessment of Biochar-to-Soil Systems: A Review. J Clean Prod 259:120998. https://doi.org/10.1016/j.jclepro.2020.120998
Wang J, Xiong Z, Kuzyakov Y (2016) Biochar stability in soil: meta-analysis of decomposition and priming effects. GCB Bioenergy 8:512–523. https://doi.org/10.1111/gcbb.12266
Kuzyakov Y, Bogomolova I, Glaser B (2014) Biochar stability in soil: decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol Biochem 70:229–236. https://doi.org/10.1016/j.soilbio.2013.12.021
Kung C-C, McCarl BA, Cao X (2013) Economics of pyrolysis-based energy production and biochar utilization: a case study in Taiwan. Energy Policy 60:317–323. https://doi.org/10.1016/j.enpol.2013.05.029
Huang Y, Anderson M, Lyons GA, McRoberts WC, Wang Y, McIlveen-Wright DR, Roskilly AP, Hewitt NJ (2014) Techno-economic analysis of biochar production and energy generation from poultry litter waste. Energy Procedia 61:714–717. https://doi.org/10.1016/j.egypro.2014.11.949
Chen C-P, Cheng C-H, Huang Y-H, Chen C-T, Lai C-M, Menyailo OV, Fan L-J, Yang Y-W (2014) Converting leguminous green manure into biochar: changes in chemical composition and C and N mineralization. Geoderma 232–234:581–588. https://doi.org/10.1016/j.geoderma.2014.06.021
Heymann K, Lehmann J, Solomon D, Schmidt MWI, Regier T (2011) C 1s K-edge near edge X-ray absorption fine structure (NEXAFS) spectroscopy for characterizing functional group chemistry of black carbon. Org Geochem 42:1055–1064. https://doi.org/10.1016/j.orggeochem.2011.06.021
Kiersch K, Kruse J, Eckhardt K-U, Fendt A, Streibel T, Zimmermann R, Broll G, Leinweber P (2012) Impact of Grassland Burning on Soil Organic Matter as Revealed by a Synchrotron- and Pyrolysis–Mass Spectrometry-Based Multi-Methodological Approach. Org Geochem 44:8–20
Banyasz JL, Li S, Lyons-Hart J, Shafer KH (2001) Gas evolution and the mechanism of cellulose pyrolysis. Fuel 80:1757–1763. https://doi.org/10.1016/S0016-2361(01)00060-6
Lin Y-C, Cho J, Tompsett GA, Westmoreland PR, Huber GW (2009) Kinetics and mechanism of cellulose pyrolysis. J Phys Chem C 113:20097–20107. https://doi.org/10.1021/jp906702p
Luo, Wang, Liao, Cen (2004) Mechanism study of cellulose rapid pyrolysis. Ind Eng Chem Res 43:5605–5610. https://doi.org/10.1021/ie030774z
Mettler MS, Paulsen AD, Vlachos DG, Dauenhauer PJ (2012) Pyrolytic conversion of cellulose to fuels: levoglucosan deoxygenation via elimination and cyclization within molten biomass. Energy Environ Sci 5:7864–7868. https://doi.org/10.1039/C2EE21305B
Patwardhan PR, Dalluge DL, Shanks BH, Brown RC (2011) Distinguishing primary and secondary reactions of cellulose pyrolysis. Bioresour Technol 102:5265–5269. https://doi.org/10.1016/j.biortech.2011.02.018
Vinu R, Broadbelt LJ (2012) A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energy Environ Sci 5:9808–9826. https://doi.org/10.1039/C2EE22784C
Wooten JB, Seeman JI, Hajaligol MR (2004) Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A New Mechanistic Model. Energy Fuel 18:1–15. https://doi.org/10.1021/ef0300601
Zhang X, Yang W, Blasiak W (2012) Thermal decomposition mechanism of levoglucosan during cellulose pyrolysis. J Anal Appl Pyrolysis 96:110–119. https://doi.org/10.1016/j.jaap.2012.03.012
Huang J, Liu C, Tong H, Li W, Wu D (2012) Theoretical studies on pyrolysis mechanism of xylopyranose. Comput Theoret Chem 1001:44–50. https://doi.org/10.1016/j.comptc.2012.10.015
Peng Y, Wu S (2010) The structural and thermal characteristics of wheat straw hemicellulose. J Anal Appl Pyrolysis 88:134–139. https://doi.org/10.1016/j.jaap.2010.03.006
Peters B (1993–1998) Prediction of pyrolysis of pistachio shells based on its components hemicellulose, cellulose and lignin. Fuel Process Technol 2011:92. https://doi.org/10.1016/j.fuproc.2011.05.023
Sefain MZ, El-Kalyoubi SF, Shukry N (1985) Thermal behavior of holo- and hemicellulose obtained from rice straw and bagasse. J Polymer Sci Polymer Chem Edition 23:1569–1577. https://doi.org/10.1002/pol.1985.170230527
Shen D, Xiao R, Gu S, Luo K (2011) The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Adv 1:1641–1660. https://doi.org/10.1039/C1RA00534K
Shen DK, Gu S, Bridgwater AV (2010) The thermal performance of the polysaccharides extracted from hardwood: cellulose and hemicellulose. Carbohydr Polym 82:39–45. https://doi.org/10.1016/j.carbpol.2010.04.018
Wiedner K, Rumpel C, Steiner C, Pozzi A, Maas R, Glaser B (2013) Chemical evaluation of chars produced by thermochemical conversion (gasification, pyrolysis and hydrothermal carbonization) of agro-industrial biomass on a commercial scale. Biomass Bioenergy 59:264–278. https://doi.org/10.1016/j.biombioe.2013.08.026
Ben H, Ragauskas AJ (2011) NMR Characterization of pyrolysis oils from kraft lignin. Energy Fuel 25:2322–2332. https://doi.org/10.1021/ef2001162
Chu S, Subrahmanyam AV, Huber GW (2012) The pyrolysis chemistry of a β-O-4 type oligomeric lignin model compound. Green Chem 15:125–136. https://doi.org/10.1039/C2GC36332A
Kosa M, Ben H, Theliander H, Ragauskas AJ (2011) Pyrolysis oils from CO2 precipitated kraft lignin. Green Chem 13:3196–3202. https://doi.org/10.1039/C1GC15818J
Mu W, Ben H, Ragauskas A, Deng Y (2013) Lignin pyrolysis components and upgrading—technology review. Bioenerg Res 6:1183–1204. https://doi.org/10.1007/s12155-013-9314-7
Brownsort, P.A. (2009) Biomass pyrolysis processes: performance parameters and their influence on biochar system benefits.
Spokas KA, Novak JM, Masiello CA, Johnson MG, Colosky EC, Ippolito JA, Trigo C (2014) Physical disintegration of biochar: an overlooked process. Environ Sci Technol Lett 1:326–332. https://doi.org/10.1021/ez500199t
Wang D, Zhang W, Hao X, Zhou D (2013) Transport of biochar particles in saturated granular media: effects of pyrolysis temperature and particle size. Environ Sci Technol 47:821–828. https://doi.org/10.1021/es303794d
Wong JTF, Chen Z, Chen X, Ng CWW, Wong MH (2017) Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material. J Soils Sediments 17:590–598. https://doi.org/10.1007/s11368-016-1401-x
Freddo A, Cai C, Reid BJ (2012) Environmental contextualisation of potential toxic elements and polycyclic aromatic hydrocarbons in biochar. Environ Pollut 171:18–24
Liao W, Thomas S (2019) Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Systems 3(1):14
Ni N, Yang S, Shi R, Liu Z, Bian Y, Wang F, Yang X, Chenggang G, Jiang X (2017) Biochar reduces the bioaccumulation of PAHs from soil to carrot ( Daucus carota L.) in the rhizosphere: a mechanism study. Sci Total Environ 601-602:1015–1023
Yargicoglu EN, Sadasivam BY, Reddy KR, Spokas K (2015) Physical and chemical characterization of waste wood derived biochars. Waste Manag 36:256–268
Yang X, Zhang S, Ju M, Liu L (2019) Preparation and modification of biochar materials and their application in soil remediation. Appl Sci 9:1365. https://doi.org/10.3390/app9071365
Chen Z, Xiao X, Chen B, Zhu L (2015) Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environ Sci Technol 49:309–317. https://doi.org/10.1021/es5043468
Tang F, Xu Z, Gao M, Li L, Li H, Cheng H, Zhang C, Tian G (2019) The dissipation of cyazofamid and its main metabolite in soil response oppositely to biochar application. Chemosphere 218:26–35. https://doi.org/10.1016/j.chemosphere.2018.11.094
Teixidó M, Pignatello JJ, Beltrán JL, Granados M, Peccia J (2011) Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ Sci Technol 45:10020–10027. https://doi.org/10.1021/es202487h
Zheng H, Zhang C, Liu B, Liu G, Zhao M, Xu G, Luo X, Li F, Xing B (2020) Biochar for water and soil remediation: production, characterization, and application. In: Jiang G, Li X (eds) A New Paradigm for Environmental Chemistry and Toxicology: From Concepts to Insights. Springer, Singapore, pp 153–196 ISBN 9789811394478
Lian F, Xing B (2017) Black Carbon (Biochar) In water/soil environments: molecular structure, sorption, stability, and potential risk. Environ Sci Technol 51:13517–13532. https://doi.org/10.1021/acs.est.7b02528
Xiao X, Chen B, Chen Z, Zhu L, Schnoor JL (2018) Insight into multiple and multilevel structures of biochars and their potential environmental applications: a critical review. Environ Sci Technol 52:5027–5047. https://doi.org/10.1021/acs.est.7b06487
Xu X, Zhao Y, Sima J, Zhao L, Mašek O, Cao X (2017) Indispensable role of biochar-inherent mineral constituents in its environmental applications: a review. Bioresour Technol 241:887–899. https://doi.org/10.1016/j.biortech.2017.06.023
Liu L, Tan Z, Gong H, Huang Q (2019) Migration and transformation mechanisms of nutrient elements (N, P, K) within biochar in straw–biochar–soil–plant systems: a review. ACS Sustain Chem Eng 7:22–32. https://doi.org/10.1021/acssuschemeng.8b04253
Wang Z, Zheng H, Luo Y, Deng X, Herbert S, Xing B (2013) Characterization and influence of biochars on nitrous oxide emission from agricultural soil. Environ Pollut 174:289–296. https://doi.org/10.1016/j.envpol.2012.12.003
Cao X, Ma L, Gao B, Harris W (2009) Dairy-manure derived biochar effectively sorbs lead and atrazine. Environ Sci Technol 43:3285–3291. https://doi.org/10.1021/es803092k
Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45:4884–4889. https://doi.org/10.1021/es103752u
Wang Z, Liu G, Zheng H, Li F, Ngo HH, Guo W, Liu C, Chen L, Xing B (2015) Investigating the mechanisms of biochar’s removal of lead from solution. Bioresour Technol 177:308–317. https://doi.org/10.1016/j.biortech.2014.11.077
Zheng H, Wang Z, Zhao J, Herbert S, Xing B (2013) Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environ Pollut 181:60–67. https://doi.org/10.1016/j.envpol.2013.05.056
Guo J, Chen B (2014) Insights on the molecular mechanism for the recalcitrance of biochars: interactive effects of carbon and silicon components. Environ Sci Technol 48:9103–9112. https://doi.org/10.1021/es405647e
Xiao X, Chen B, Zhu L (2014) Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol 48:3411–3419. https://doi.org/10.1021/es405676h
Pignatello JJ, Mitch WA, Xu W (2017) Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds. Environ Sci Technol 51:8893–8908. https://doi.org/10.1021/acs.est.7b01088
Zhu X, Chen B, Zhu L, Xing B (2017) Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review. Environ Pollut 227:98–115. https://doi.org/10.1016/j.envpol.2017.04.032
Lehmann J (2009) Terra Preta Nova – Where to from Here? In: Woods WI, Teixeira WG, Lehmann J, Steiner C, WinklerPrins A, Rebellato L (eds) Amazonian Dark Earths: Wim Sombroek’s Vision. Springer Netherlands, Dordrecht, pp 473–486 ISBN 978-1-4020-9031-8
Li R, Wang JJ, Gaston LA, Zhou B, Li M, Xiao R, Wang Q, Zhang Z, Huang H, Liang W, Huang H, Zhang X (2018) An overview of carbothermal synthesis of metal–biochar composites for the removal of oxyanion contaminants from aqueous solution. Carbon 129:674–687. https://doi.org/10.1016/j.carbon.2017.12.070
Sohi S, Lopez-Capel E, Krull E, Bol R (2009) Biochar, climate change and soil: a review to guide future research. In: CSIRO Land and Water Science Report, vol 5
Muhammad N, Hussain M, Ullah W, Khan TA, Ali S, Akbar A, Aziz R, Rafiq MK, Bachmann RT, Al-Wabel MI, Rizwan M (2018) Biochar for Sustainable soil and environment: a comprehensive review. Arab J Geosci 11:731. https://doi.org/10.1007/s12517-018-4074-5
Igalavithana AD, Mandal S, Niazi NK, Vithanage M, Parikh SJ, Mukome FND, Rizwan M, Oleszczuk P, Al-Wabel M, Bolan N, Tsang DCW, Kim K, Ok YS (2017) Advances and future directions of biochar characterization methods and applications. Crit Rev Environ Sci Technol 47:2275–2330. https://doi.org/10.1080/10643389.2017.1421844
Hans-Peter Schmidt European Biochar Certificate (EBC) - Guidelines Version 6.1. 2015, https://doi.org/10.13140/RG.2.1.4658.7043.
Saletnik B, Zaguła G, Bajcar M, Tarapatskyy M, Bobula G, Puchalski C (2019) Biochar as a multifunctional component of the environment—a review. Appl Sci 9:1139. https://doi.org/10.3390/app9061139
Rawat J, Saxena J, Sanwal P (2019) Biochar: a sustainable approach for improving plant growth and soil properties. Biochar. https://doi.org/10.5772/intechopen.82151
Peng X, Ye LL, Wang CH, Zhou H, Sun B (2011) Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an ultisol in southern China. Soil Tillage Res 112:159–166. https://doi.org/10.1016/j.still.2011.01.002
Ni JJ, Bordoloi S, Shao W, Garg A, Xu G, Sarmah AK (2020) Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci Total Environ 712:136486. https://doi.org/10.1016/j.scitotenv.2019.136486
Are KS (2019) Biochar and Soil Physical Health. Biochar. https://doi.org/10.5772/intechopen.83706
Mei G, Kumar H, Huang H, Cai W, Reddy NG, Chen P, Garg A, Ganeshan SP (2020) Desiccation cracks mitigation using biomass derived carbon produced from aquatic species in South China Sea. Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01057-7
Kumar H, Cai W, Lai J, Chen P, Ganesan SP, Bordoloi S, Liu X, Wen Y, Garg A, Mei G (2020) Influence of In-house produced biochars on cracks and retained water during drying-wetting cycles: comparison between conventional plant, animal, and nano-biochars. J Soils Sediments 20:1983–1996. https://doi.org/10.1007/s11368-020-02573-8
Jien S-H, Wang C-S (2013) Effects of biochar on soil properties and erosion potential in a highly weathered soil. CATENA 110:225–233. https://doi.org/10.1016/j.catena.2013.06.021
De Meyer A, Poesen J, Isabirye M, Deckers J, Raes D (2011) Soil erosion rates in tropical villages: a case study from Lake Victoria Basin, Uganda. CATENA 84:89–98. https://doi.org/10.1016/j.catena.2010.10.001
Hoyos N (2005) Spatial modeling of soil erosion potential in a tropical watershed of the Colombian Andes. CATENA 63:85–108. https://doi.org/10.1016/j.catena.2005.05.012
Annabi M, Le Bissonnais Y, Le Villio-Poitrenaud M, Houot S (2011) Improvement of soil aggregate stability by repeated applications of organic amendments to a cultivated silty loam soil. Agric Ecosyst Environ 144:382–389. https://doi.org/10.1016/j.agee.2011.07.005
Tejada M, Gonzalez JL (2007) Influence of organic amendments on soil structure and soil loss under simulated rain. Soil Tillage Res 93:197–205. https://doi.org/10.1016/j.still.2006.04.002
Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic Properties of biochars produced at different temperatures. Biomass Bioenergy 41:34–43. https://doi.org/10.1016/j.biombioe.2012.01.033
Lehmann J (2007) A Handful of Carbon. Nature 447:143–144. https://doi.org/10.1038/447143a
Kumar H, Ganesan SP, Bordoloi S, Sreedeep S, Lin P, Mei G, Garg A, Sarmah AK (2019) Erodibility assessment of compacted biochar amended soil for geo-environmental applications. Sci Total Environ 672:698–707. https://doi.org/10.1016/j.scitotenv.2019.03.417
Yu X, Lu S (2020) Double effects of biochar in affecting the macropore system of paddy soils identified by high-resolution X-ray tomography. Sci Total Environ 720:137690. https://doi.org/10.1016/j.scitotenv.2020.137690