Đánh giá tổng quát các tính chất của asphaltene và các yếu tố ảnh hưởng đến sự ổn định của nó trong dầu thô
Tóm tắt
Asphaltene là một thành phần của dầu thô đã được báo cáo gây ra những vấn đề nghiêm trọng trong quá trình sản xuất và vận chuyển dầu từ mỏ. Đây là một thành phần rắn của dầu với các cấu trúc và thành phần phân tử khác nhau, khiến nó trở thành một trong những thành phần phức tạp nhất của dầu. Nghiên cứu này cung cấp một cái nhìn tổng quan chi tiết về các tính chất, đặc điểm của asphaltene và các nghiên cứu trước đó nhằm xây dựng các hướng dẫn về asphaltene và tác động của nó đối với việc thu hồi dầu. Nghiên cứu bắt đầu với việc giải thích các thành phần chính của dầu thô và mối quan hệ của chúng với asphaltene. Phương pháp định lượng asphaltene trong dầu thô sau đó cũng được giải thích. Do có các cấu trúc khác nhau, asphaltene đã được mô hình hóa bằng nhiều mô hình khác nhau và tất cả đều được thảo luận. Tất cả các phương pháp phân tích hóa học đã được sử dụng để xác định và nghiên cứu asphaltene cũng được đề cập và phương pháp thường được sử dụng nhất được chỉ ra. Asphaltene sẽ trải qua nhiều giai đoạn trong mỏ, bắt đầu từ giai đoạn ổn định cho đến khi lắng đọng trong các lỗ, giếng khoan và các thiết bị. Tất cả các giai đoạn này được giải thích, và lý do mà chúng có thể xảy ra được đề cập. Tiếp theo, các phương pháp mà asphaltene có thể gây hại cho việc thu hồi dầu được trình bày. Cơ chế lưu lượng và độ nhớt của asphaltene trong mỏ sau đó được giải thích chi tiết, bao gồm xác định áp suất bắt đầu của asphaltene và tầm quan trọng của nó, cũng như việc sử dụng vi và nano chất lỏng để mô hình hóa asphaltene. Cuối cùng, các mô hình toán học, các nghiên cứu trước đây trong phòng thí nghiệm và ở hiện trường nhằm đánh giá asphaltene được thảo luận. Nghiên cứu này sẽ giúp tăng cường hiểu biết về asphaltene và cung cấp hướng dẫn để nghiên cứu và mô hình hóa asphaltene một cách phù hợp trong các nghiên cứu tương lai.
Từ khóa
Tài liệu tham khảo
Abdel-Raouf M (2012) Factors affecting the stability of crude oil emulsions. In: Crude oil emulsions—composition stability and characterization. Manar El-Sayed Abdel-Raouf, IntechOpen. https://doi.org/10.5772/35018. Available from: https://www.intechopen.com/books/crude-oil-emulsions-composition-stability-and-characterization/factors-affecting-the-stability-of-crude-oil-emulsions
Afolabi R, Yusuf E (2019) Nanotechnology and global energy demand: challenges and prospects for a paradigm shift in the oil and gas industry. J Pet Explor Prod Technol 2019(9):1423–1441. https://doi.org/10.1007/s13202-018-0538-0
Ahmadi MA (2011) Prediction of asphaltene precipitation using artificial neural network optimized by imperialist competitive algorithm. J Pet Explor Prod Technol 1:99. https://doi.org/10.1007/s13202-011-0013-7
Akbarzadeh K et al (2007) Asphaltenes-problematic but rich in potential. Oilfield Rev 19(2):22–43
Al-Ghazi S, Lawson J (2007) Asphaltene cleanout using vibrablaster tool. Soc Pet Eng. https://doi.org/10.2118/110972-MS
Alrashidi H, Farid Ibrahim A, Nasr-El-Din H (2018, June 22) Bio-oil dispersants effectiveness on asphaltene sludge during carbonate acidizing treatment. Soc Pet Eng. https://doi.org/10.2118/191165-ms
Alshaikh M et al (2018) An innovative dielectric constant measurement method to determine the ideal surfactant candidate to enhance heavy oil recovery. Soc Pet Eng. https://doi.org/10.2118/189752-MS
Alshaikh M et al (2019) Anionic surfactant and heavy oil interaction during surfactant-steam process. Soc Pet Eng. https://doi.org/10.2118/195254-MS
Alvarez-Ramirez F, Ruiz-Morales Y (2003) Island versus archipelago architecture for asphaltenes: polycyclic aromatic hydrocarbon dimer theoretical studies. Energy Fuels 27(4):1791–1808. https://doi.org/10.1021/ef301522m
Angle CW, Hua Y (2012) Dilational interfacial rheology for increasingly deasphalted bitumens and n-C5 asphaltenes in toluene/NaHCO3 solution. Energy Fuels 26(10):6228–6239. https://doi.org/10.1021/ef300846z
Ashoori S, Jamialahmadi M, Müller Steinhagen H, Ahmadi K (2006) Investigation of reversibility of asphaltene precipitation and deposition for an Iranian crude oil. Iran J Chem Chem Eng (IJCCE) 25(3):41–47
Ashoori J, Muller S, Ahmadi K (2003) A New Scaling Equation for Modeling of Asphaltene Precipitation. Soc Pet Eng. https://doi.org/10.2118/85673-MS
Bagheri MB, Mirzabozorg A, Kharrat R, Dastkhan Z, Ghotbi C (2009) Developing a new scaling equation for modelling of asphaltene precipitation. In: Canadian international petroleum conference (CIPC), Calgary, 16–18 June 2009
Bahzad D, Al-Fadhli J, Al-Dhafeeri A, Abdal A (2010) Assessment of selected apparent kinetic parameters of the HDM and HDS reactions of two Kuwaiti RESIDUAL oils, using two types of commercial ARDS catalysts. Energy Fuels 24:1495–1501
Behbahani TJ, Ghotbi C, Taghikhani V, Shahrabadi A (2012) Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media: a novel experimental study and a modified model based on multilayer theory for asphaltene adsorption. Energy Fuels 26(8):5080–5091. https://doi.org/10.1021/ef300647f
Bissada KA et al (2016) Group-type characterization of crude oil and bitumen. Part II: efficient separation and quantification of normal-paraffins iso-paraffins and naphthenes (PIN). Fuel 173:217–221
Boussingault JB (1837) Mémoire sur la composition des bitumes. Ann Chim Phys 64:141–151
Burke N et al (1990) Measurement and modeling of asphaltene precipitation (includes associated paper 23831). J Pet Technol 42(11):1440–1446
Castillo J et al (2009) Measurement of the refractive index of crude oil and asphaltene solutions: onset flocculation determination. Energy Fuels 24(1):492–495
Cendejasa G, Arreguina A, Laura Castroa V, Floresa Eugenio A, Vazqueza F (2013) Demulsifying super-heavy crude oil with bifunctionalized block copolymers. Fuel 03:356–363
Cho Y, Na J-G, Nho n-S, Kim S, Kim S (2012) Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization. Energy Fuels 26:2558–2565
Cruz JL, Argüelles-Vivas FJ, Matías-Pérez V, Durán-Valencia CD, López-Ramírez S (2009) Asphaltene-induced precipitation and deposition during pressure depletion on a porous medium: an experimental investigation and modeling approach. Energy Fuels 23(11):5611–5625. https://doi.org/10.1021/ef9006142
Czarnecki J, Moran K (2005) On the stabilization mechanism of water-in-oil emulsions in petroleum systems. Energy Fuels 19(5):2074–2079. https://doi.org/10.1021/ef0501400
D-4124-97, ASTM. Standard Test Methods for Separation of Asphalt into Four Fractions. Updated 2019
De Boer RB et al (1995) Screening of crude oils for asphalt precipitation: theory, practice, and the selection of inhibitors. SPE Prod Facil 10(1):55–61
Ekulu G et al (2004) Scanning aggregation phenomena in crude oils with density measurements. J Dispers Sci Technol 25(3):321–331
Elkahky S et al (2019) A comparative study of density estimation of asphaltene structures using group contribution methods and molecular dynamic simulations for an Australian oil field. J Petrol Explor Prod Technol 9:2699. https://doi.org/10.1007/s13202-019-0641-x
Fakher S, Imqam A (2018a, October 29). Investigating and mitigating asphaltene precipitation and deposition in low permeability oil reservoirs during carbon dioxide flooding to increase oil recovery. Soc Pet Eng. https://doi.org/10.2118/192558-ms
Fakher S, Imqam A (2018b) Asphaltene precipitation and deposition during CO2 injection in nano shale pore structure and its impact on oil recovery. Fuel 237:1029–1039. https://doi.org/10.1016/j.fuel.2018.10.039
Fakher S, Imqam A, Wanas E (2018, December 10). Investigating the viscosity reduction of ultra-heavy crude oil using hydrocarbon soluble low molecular weight compounds to improve oil production and transportation. Soc Pet Eng. https://doi.org/10.2118/193677-ms
Fakher S et al (2019) An experimental investigation of asphaltene stability in heavy crude oil during carbon dioxide injection. J Petrol Explor Prod Technol. https://doi.org/10.1007/s13202-019-00782-7
Fan T et al (2002) Evaluating crude oils by SARA analysis. Presented at the SPE/DOE improved oil recovery symposium, Tulsa, Oklahoma, 13–17 April. SPE-75228-MS
Fan H (2003) The effects of reservoir minerals on the composition changes of heavy oil during steam stimulation. J Can Pet Technol 42(3):11–14
Fernø MA, Torsvik M, Haugland S, Graue A (2010) Dynamic laboratory wettability alteration. Energy Fuels 24(7):3950–3958. https://doi.org/10.1021/ef1001716
Flory (1941) Thermodynamics of high polymer solutions. J Chem Phys 9:660. https://doi.org/10.1063/1.1750971
Forte E, Taylor SE (2014) Thermodynamic modelling of asphaltene precipitation and related phenomena. Adv Coll Interface Sci 217:1–12
Gholami A et al (2016) Improving the estimation accuracy of titration-based asphaltene precipitation through power-law committee machine (PLCM) model with alternating conditional expectation (ACE) and support vector regression (SVR) elements. J Pet Explor Prod Technol 6:265. https://doi.org/10.1007/s13202-015-0189-3
Goel P et al (2017) Prediction of API values of crude oils by use of saturates/aromatics/resins/asphaltenes analysis: computational-intelligence-based models. Soc Pet Eng J. https://doi.org/10.2118/184391-PA
Golkari A, Riazi M (2017) Experimental investigation of miscibility conditions of dead and live asphaltenic crude oil–CO2 systems. J Pet Explor Prod Technol 7:597. https://doi.org/10.1007/s13202-016-0280-4
Goual L (2012) Petroleum asphaltenes, crude oil emulsions–composition stability and characterization. ISBN: 978-953-51-0220-5
Goual L, Abudu A (2009) Predicting the adsorption of asphaltenes from their electrical conductivity. Energy Fuel 24:469–474
Groenzin H, Mullins OC (2000) Molecular size and structure of asphaltenes from various sources. Energy Fuels 14(3):677–684
Hammami A et al (2000) Asphaltene precipitation from live oils: an experimental investigation of onset conditions and reversibility. Energy Fuels 14(1):14–18
Hannisdal A, Ese MH, Hemmingsen PV, Sjoblom J (2006) Particle-stabilized emulsions: effect of heavy crude oil components pre-adsorbed onto stabilizing solids. Colloids Surf A Physicochem Eng. Aspects 276:45–58
Hernandez ME, Vives MT, Pasquali J (1983) Relationships among viscosity, composition, and temperature for two groups of heavy crudes from the eastern Venezuelan basin. Org Geochem 4:173–178
Ihtsham M, Ghosh B (2015) Dynamic asphaltene deposition control in pipe flow through the application of DC potential. J. Pet Explor Prod Technol 5:99. https://doi.org/10.1007/s13202-014-0113-2
Iraji S, Ayatollahi S (2019) Experimental investigation on asphaltene biodegradability using microorganism: cell surface properties’ approach. J Pet Explor Prod Technol 9:1413. https://doi.org/10.1007/s13202-018-0537-1
Islas-Flores CA, Buenrostro-Gonzalez E et al (2005) Comparisons between open column chromatography and HPLC SARA fractionations in petroleum. Energy Fuels 19(5):2080–2088
Jamaluddin AKM et al (2000) Experimental and theoretical assessment of the asphaltene precipitation characteristics of the Sahil field under a proposed gas injection scheme. In: Paper SPE # 87292 presented at the SPE Conf. and Exh., 15–18 October 2000, Abu Dhabi, UAE
Jewell D et al (1972) Ion-exchange, coordination, and adsorption chromatographic separation of heavy-end petroleum distillates. Anal Chem 44(8):1391–1395
Jha NK et al (2014) Characterization of crude oil of upper Assam field for flow assurance. Presented at the SPE Saudi Arabia Section Annual Technical Symposium and Exhibition, Al-Khobar, Saudi Arabia, 21–24 April. SPE-172226-MS
Kalantari-Dahagi A et al (2006) Formation damage due to asphaltene precipitation resulting from CO2 gas injection in Iranian carbonate reservoirs. Soc Pet Eng. https://doi.org/10.2118/99631-MS
Kargarpour MA, Dandekar A (2016) Analysis of asphaltene deposition in Marrat oil well string: a new approach. J Petrol Explor Prod Technol 6:845. https://doi.org/10.1007/s13202-015-0221-7
Karlsen DA, Larter SR (1991) Analysis of petroleum fractions by TLC-FID: applications to petroleum reservoir description. Org Geochem 17(5):603–617
Kawanaka S, Park SJ, Mansooori GA (1988) The role of asphaltene deposition in EOR gas flooding: a predictive technique. Soc Pet Eng DOE SPE 17376:617–627
Kazempour M, Manrique EJ, Alvarado V, Zhang J, Lantz M (2013) Role of active clays on alkaline–surfactant–polymer formulation performance in sandstone formations. Fuel 104:593–606. https://doi.org/10.1016/j.fuel.2012.04.034
Keshmiri K et al (2016) Using microfluidic device to study rheological properties of heavy oil. In: 16th AIChE annual meeting, San Francisco, CA, USA
Keshmirizadeh E, Shobeirian S, Memariani M (2013) Determination of saturates, aromatics, resins and asphaltenes (SARA) fractions in Iran crude oil sample with chromatography methods: study of the geochemical parameters. J Appl Chem Res 7(4):15–24
Khamehchi E, Shakiba M, Ardakani MS (2018) A novel approach to oil production optimization considering asphaltene precipitation: a case study on one of the Iranian south oil wells. J Pet Explor Prod Technol 8:1303. https://doi.org/10.1007/s13202-017-0409-0
Kharrat A et al (2013) Asphaltene content measurement using an optical spectroscopy technique. Energy Fuels 27(5):2452–2457. https://doi.org/10.1021/ef400050y
Kim ST et al (1990) The role of asphaltene in wettability reversal. In: SPE Paper presented at the SPE Annual Technical Conference and Exhibition, 1990, New Orleans, Louisiana
Kok MV, Karacan O, Pamir R (1998) Kinetic analysis of oxidation behaviour of crude oil SARA constituents. Energy Fuels 12–3:580–588
Kor P et al (2017) Comparison and evaluation of several models in prediction of asphaltene deposition profile along an oil well: a case study. J Pet Explor Prod Technol 7:497. https://doi.org/10.1007/s13202-016-0269-z
Kord S, Miri R, Ayatollahi S, Escrochi M (2012) Asphaltene deposition in carbonate rocks: experimental investigation and numerical simulation. Energy Fuels 26(10):6186–6199. https://doi.org/10.1021/ef300692e
Kuznicki T et al (2008) Molecular dynamics study of model molecules resembling asphaltene-like structures in aqueous organic solvent systems. Energy Fuels 22(4):2379–2389. https://doi.org/10.1021/ef800057n
Lammoglia T, Filho CRdS (2011) Spectroscopic characterization of oils yielded from Brazilian offshore basins: potential applications of remote sensing. Remote Sens Env 115:2525–2535
Leandra S et al (2018) Stress relaxation in quasi-two-dimensional self-assembled nanoparticle monolayers. Phys Rev E 96(5):052803. https://doi.org/10.1103/PhysRevE.97.052803
Leon O, Contreras E, Rogel E, Dambakli G, Acevedo S, Carbognani L, Espidel J (2002) Adsorption of native resins on asphaltene particles: a correlation between adsorption and activity. Langmuir 18:5106–5112
Leontaritis K, Mansoori GA (1987) Asphaltene flocculation during oil production and processing: a thermodynamic collodial model. In: SPE international symposium on oilfield chemistry. Society of Petroleum Engineers
Liao H et al (2019) Effect of crude oil composition on microwave absorption of heavy Oils. Soc Pet Eng. https://doi.org/10.2118/195263-MS
Lichaa PM, Herrera L (1975) Electrical and other effects related to the formation and prevention of asphaltene deposition problem in Venezuelan crudes. In: SPE oilfield chemistry symposium. Society of Petroleum Engineers
Lin Y et al (2016) Examining asphaltene solubility on deposition in model porous media. Langmuir 32(34):8729–8734. https://doi.org/10.1021/acs.langmuir.6b02376
Liu F et al (2017) Mixture effect on the dilatation rheology of asphaltenes-laden interfaces. Langmuir 33:8. https://doi.org/10.1021/acs.langmuir.6b03958
Martinez MT, Benito AM, Callejas MA (1997) Thermal cracking of coal residues: kinetics of asphaltene decomposition. Fuel 76(9):871–877
Miadonye A, Evans L (2010) The solubility of asphaltenes in different hydrocarbon liquids. Pet Sci Technol J. https://doi.org/10.1080/10916460902936960
Mishra VK et al (2012) Downhole fluid analysis and asphaltene nanoscience coupled with VIT for risk reduction in black oil production. Presented at the SPE annual technical conference and exhibition, San Antonio, USA, 8-10
Mohammadi AH, Richon D (2007) A monodisperse thermodynamic model for estimating asphaltene precipitation. AIChE J 53(11):2940–2947
Monger TG, Fu JC (1987) The nature of CO2-induced organic deposition. In: SPE paper # 16713 presented at the SPE Annual Technical Conference and Exhibition, Houston, TX
Mozaffari S (2015) Rheology of Bitumen at the onset of asphaltene aggregation and its effects on the stability of water-in-oil emulsion. Masters Thesis, University of Alberta, Canada
Mozaffari S et al (2015) Effect of asphaltene aggregation on rheological properties of diluted athabasca bitumen. Energy Fuels 29(9):5595–5599. https://doi.org/10.1021/acs.energyfuels.5b00918
Mozaffari S et al (2016) Capillary driven flow in nanochannels—application to heavy oil rheology studies. Colloids Surf A 513(5):178–187. https://doi.org/10.1016/j.colsurfa.2016.10.038
Mozaffari S et al (2017a) Capillary driven flow in nanochannels—application to heavy oil rheology studies. Colloids Surf A 513:178–187. https://doi.org/10.1016/j.colsurfa.2016.10.038
Mozaffari S et al (2017b) Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand–metal binding role in controlling the nucleation and growth kinetics. Nanoscale 9(36):13772–13785. https://doi.org/10.1039/C7NR04101B
Mozaffari S et al (2018) Ligand-mediated nucleation and growth of palladium metal nanoparticles. J Vis Exp 136:e57667. https://doi.org/10.3791/57667
Mullins OC (2011) The asphaltenes. Ann Rev. Anal Chem 4:393–418
Mullins OC et al (2013) Asphaltene nanoscience and reservoir fluid gradients, tar mat formation, and the oil–water interface. Presented at the SPE annual technical conference and exhibition, Louisiana, USA, 30 Sept 2 Oct
Nazemifard N (2019) Application of micro/nanofluidics in energy. Fluids at Brown, Division of Applied Mathematics, Fluids and Thermal Sciences, School of Engineering, Joint Seminar Series
Nghiem LX, Coombe DA (1997) Modelling asphaltene precipitation during primary depletion. SPE J 2(02):170–176
Nwadinigwe C et al (2015) Studies on precipitation performance of n-heptane and n-pentane/n-heptane on C7 and C5/C7 asphaltenes and maltenes from 350 C atmospheric residuum of three Nigerian light crudes. J Pet Explor Prod Technol 5:403. https://doi.org/10.1007/s13202-014-0150-x
Pazuki GR (2007) Application of a new cubic equation of state to computation of phase behavior of fluids and asphaltene precipitation in crude oil. Fluid Phase Equilib 254(1):42–48
Pearson CD, Gharfeh SG (1986) Automated high-performance liquid chromatography determination of hydrocarbon types in crude oil residues using a flame ionization detector. Anal Chem 58(2):307–311
Prakoso AA et al (2017) A mechanistic understanding of asphaltenes precipitation from varying-saturate-concentration perspectives. Soc Pet Eng. https://doi.org/10.2118/177280-PA
Punase A et al (2016) The polarity of crude oil fractions affects the asphaltenes stability. Soc Pet Eng. https://doi.org/10.2118/180423-MS
Rassamdana H, Sahimi M (1996) Asphalt flocculation and deposition: II. Formation and growth of fractal aggregates. AIChE J 42(12):3318–3332
Rassamdana HB et al (1996) Asphaltene flocculation and deposition: I. The onset of precipitation. AIChE J 42(1):10–22
Rogel E et al (1999) Asphaltene stability in crude oils. Soc Pet Eng. https://doi.org/10.2118/53998-MS
Salleh IK et al (2019) Micro-emulsion-based dissolver for removal of mixed scale deposition. J Pet Explor Prod Technol 9:2635. https://doi.org/10.1007/s13202-019-0643-8
Schantz S, Stephenson W (1991) Asphaltene deposition: development and application of polymeric asphaltene dispersants. Soc Pet Eng. https://doi.org/10.2118/22783-MS
Scott RL, Magat M (1945) The thermodynamics of high-polymer solutions: the free energy of mixing of solvents and polymers of heterogeneous distribution. J Chem Phys. 13(5):172–177
Seifert DJ et al (2012) Black oil, heavy oil, and tar in one oil column understood by simple asphaltene nanoscience. Presented at the Abu Dhabi international petroleum exhibition & conference, UAE, 11–14 November
Seifried C et al (2013) Kinetics of asphaltene aggregation in crude oil studied by confocal laser-scanning microscopy. Energy Fuels 27:1865–1872
Shedid and Zekri (2006) Formation damage caused by simultaneous sulfur and asphaltene deposition. Soc Pet Eng. https://doi.org/10.2118/86553-PA
Shen and Sheng (2018) Experimental and numerical study of permeability reduction caused by asphaltene precipitation and deposition during CO2 huff and puff injection in Eagle Ford shale. Fuel 211:432–445. https://doi.org/10.1016/j.fuel.2017.09.047
Sieben V et al (2016) Microfluidic approach for evaluating the solubility of crude oil asphaltenes. Energy Fuels 30(3):1933–1946. https://doi.org/10.1021/acs.energyfuels.5b02216
Sieben V et al (2017) Optical measurement of saturates, aromatics, resins, and asphaltenes in crude oil. Energy Fuels 31(4):3684–3697. https://doi.org/10.1021/acs.energyfuels.6b03274
Soleymanzadeh A et al (2018) A review on methods of determining onset of asphaltene precipitation. J Pet Explor Prod Technol 2019(9):1375–1396. https://doi.org/10.1007/s13202-018-0533-5
Soroush S et al (2014) A comparison of asphaltene deposition in miscible and immiscible carbon dioxide flooding in porous media. Soc Pet Eng. https://doi.org/10.2118/169657-MS
Speight JG (1999) The chemical and physical structure of petroleum: effect on recovery operations. J Pet Sci Eng 22:3–15
Speight JG et al (1985) Molecular weight and association of asphaltenes: a critical review. Revue De L’Institut FrancaisDu Petrole 40(1):51–61
Struchkov IA et al (2019) Laboratory investigation of asphaltene-induced formation damage. J Pet Explor Prod Technol 9:1443. https://doi.org/10.1007/s13202-018-0539-z
Tchoukov P et al (2010) Study of water-in-oil thin liquid films: implications for the stability of petroleum emulsions. Colloids Surf A Physicochem Eng Aspects 372(1–3):15–21. https://doi.org/10.1016/j.colsurfa.2010.09.007
Thawer R et al (1990) Asphaltene deposition in production facilities. Soc Pet Eng. https://doi.org/10.2118/18473-PA
Theyab MA et al (2017) Study of fluid flow assurance in hydrocarbon production—investigation wax mechanisms. PhD Thesis, London South Bank University
Thomas D et al (1995) Controlling asphaltene deposition in oil wells. Soc Pet Eng. https://doi.org/10.2118/25483-PA
Uetani T (2014, November 10) Wettability alteration by asphaltene deposition: a field example. Soc Pet Eng. https://doi.org/10.2118/171788-ms
Wang J, Buckley J (2001) A two-component solubility model of the onset of asphaltene flocculation in crude oils. Energy Fuels 15(5):1004–1012
Wang S et al (2016) Characterization of produced and residual oils in the CO2 flooding process. Energy Fuels 30(1):54–62. https://doi.org/10.1021/acs.energyfuels.5b01828
Xu Y et al (2007) Destabilization of water in bitumen emulsion by washing with water. J Pet Sci Technol 17(9):1051–1070. https://doi.org/10.1080/10916469908949765
Yarranton HW, Alboudwarej H, Jakher R (2000) Investigation of asphaltene association with vapor pressure osmometry and interfacial tension measurements. Ind Eng Chem Res 39(8):2916–2924
Yen A et al (2001) Evaluating asphaltene inhibitors: laboratory tests and field studies. In: Paper SPE -65376-MS presented at the SPE international symposium on oilfield chemistry 2001, Houston, Texas
Yeung A et al (1999) On the interfacial properties of micrometre-sized water droplets in crude oil. R Society A. https://doi.org/10.1098/rspa.1999.0473
Yonebayashi H et al (2011) Dynamic asphaltene behavior for gas-injection risk analysis. Soc Pet Eng Reserv Eval Eng J. https://doi.org/10.2118/146102-PA
Zendehboudi S et al (2013) Thermodynamic investigation of asphaltene precipitation during primary oil production: laboratory and smart technique. Ind Eng Chem Res 52(17):6009–6031