Critical mass in a relativistic two-body problem

Springer Science and Business Media LLC - Tập 37 - Trang 45-54 - 2007
M. Bawin1, J. P. Lavine2
1Physique Nucléaire Théorique, Université de Liège Institut de Physique, Liège 1, Belgium
2Department of Physics and Astronomy, University of Rochester, Rochester

Tóm tắt

We use the relativistic 2-body Dirac Hamiltonian with a square-well vector interaction, to investigate how the finite mass of the source of the external field changes the behavior of the bound-state spectrum from that of one Dirac particle in an attractive square well. Limiting ourselves for simplicity to states of total spin zero, we find that, as long as the massm 2 of the heavier particle is smaller than some critical massm c, the total energyE of the system does not reach the particle-antiparticle continuum, so that no difficulty of interpretation arises. If, however,m 2 is greater thanm c, there exists, as in the one-body Dirac equation, one value of the coupling strengthV c for whichE reaches the antiparticle continuum. Then, when the coupling strength exceedsV c, the bound-state level disappears. Furthermore, for some coupling strengthV>V c, there is a 2-particle bound-state level emerging from the particle-antiparticle continuum, whose total energyE increases until it reaches the particle-particle continuum. This latter result shows that, form 2>m c, a 2-body analysis actually further complicates the interpretation of deep bound states in relativistic quantum mechanics.

Tài liệu tham khảo

L. I. Schiff, H. Snyder andJ. Weinberg:Phys. Rev.,57, 315 (1940). B. Müller, J. Rafelski andW. Greiner:Zeits. Phys.,257, 62 (1972);Nuovo Cimento,18 A, 551 (1973);Ya. B. Zel'dovich andV. S. Popov:Usp. Fiz. Nauk,105, 403 (1971) (English translation:Sov. Phys. Usp.,14, 673 (1972)). For a review of the Bethe-Salpeter equation, seeN. Nakanishi:Prog. Theor. Phys. Suppl.,43, 1 (1969). More recent work in connection with deep bound states is described inL. G. Suttorp:Nuovo Cimento,29 A, 225 (1975). C. Fronsdal andR. W. Huff:Phys. Rev. D,3, 933 (1971);W. Dittrich:Phys. Rev. D,1, 3345 (1970). For a derivation of the two-body Dirac equation from field theory see,e.g.,W. Królikowski andJ. Rzewuski:Nuovo Cimento,2, 203 (1955). There exists a wide range of alternative approaches to the relativistic two-body problem. Several may be traced through ref. (3,4)N. Nakanishi:Prog. Theor. Phys. Suppl.,43, 1 (1969). More recent work in connection with deep bound states is described inL. G. Suttorp:Nuovo Cimento,29 A, 225 (1975).C. Fronsdal andR. W. Huff:Phys. Rev. D,3, 933 (1971);W. Dittrich:Phys. Rev. D,1, 3345 (1970), the following references and the articles they cite:H. A. Bethe andE. E. Salpeter:Quantum Mechanics of One- and Two-Electron Atoms, Chap. II (Berlin and New York, N.Y., 1957);M. J. Moravcsik andH. P. Noyes:Ann. Rev. Nucl. Sci.,11, 95 (1961);A. Klein andT.-S. H. Lee:Phys. Rev. C,12, 1381 (1975);H. Enatsu andS. Kawaguchi:Nuovo Cimento,27 A, 458 (1975). For a discussion of quasi-potential equations in connection with the relativistic two-body problem, seeI. T. Todorov:Quasi-potential approach to the two-body problem in quantum field theory, inProperties of the Fundamental Interactions, Vol.9, Part C, edited byA. Zichichi (Bologna, 1973), p. 952. H. M. Moseley andN. Rosen:Phys. Rev.,80, 177 (1950). P. Horwitz:Phys. Rev.,161, 1415 (1967). M. Nagasaki:Prog. Theor. Phys.,37, 437 (1967);39, 848 (1968). Y. Koide:Prog. Theor. Phys.,39, 817 (1968). K. Schilcher andH. J. W. Müller:Nuovo Cimento,4 A, 243 (1971). E. Fermi andC. N. Yang:Phys. Rev.,76, 1739 (1949). A. I. Akhiezer andV. B. Berestetskii:Quantum Electrodynamics (New York, N. Y., 1965), p. 119.