Critical level topology of energy hypersurfaces

Theoretical Chemistry Accounts - Tập 60 - Trang 97-110 - 1981
Paul G. Mezey1
1Department of Chemistry and Chemical Engineering, University of Saskatchewan, Saskatoon, Canada

Tóm tắt

Topologies are introduced into the nuclear configuration space R of molecular systems, based upon equipotential contour hypersurfaces on the otential energy hypersurface E. Critical level topologies T fc and T fc′, based upon the number and distribution of various critical points of E, are of particular importance, since they represent convenient yet rigorous mathematical models for relations between elementary reaction mechanisms, and for relations between open sets of nuclear geometries which are classically accessible at a given total energy.

Tài liệu tham khảo

Mezey, P. G.: Theoret. Chim. Acta (Berl.), 54, 95 (1980) Mezey, P. G.: Theofet. Chim. Acta (Berl.), 58, 309 (1981); Mezey, P. G.: to be published Morse, M.: Calculus of variations in the large. Amer. Math. Soc. Colloquium Publ. Vol. 18, 1934 Murrell, J. N. Laidler, K. J.: Trans. Faraday Soc. 64, 371 (1968) Mezey, P. G.: Analysis of conformational energy hypersurfaces, In Progr. Theor. Org. Chem. 2, 127 (1977) Mezey, P. G.: Optimization and analysis of energy hypersurfaces. Proc. A.S.I. Theoretical Chemistry 1980. New York: Reidel Publ. Co., in press Tal, Y., Bader, R. F. W., Nguyen-Dang, T. T., Ojha, M., Anderson, S. G.: J. Chem. Phys. 74, 5162 (1981) Bader, R. F. W.: J. Chem. Phys. 73, 2871 (1980); Tal, Y., Bader, R. F. W., Erkku, J.: Phys. Rev. A21, 1 (1980) Mezey, P. G.: submitted Davidson, E. R.: J. Am. Chem. Soc. 99, 397 (1977) Mezey, P. G.: Chem. Phys. Letters 47, 70 (1977) Mezey, P. G., Kapur, A.: Can. J. Chem. 58, 559 (1980) Mezey, P. G.: Chem. Phys. Letters 82, 100 (1981) Morse, M., Cairns, S. S.: Critical point theory in global analysis and differential topology. New York: Academic Press 1969 Milnor, J.: Morse theory, Annals of Math. Studies, Vol. 51, Princeton Univ. Press 1973 Munkres, J.: Elementary differential topology. Annals of Math. Studies, Vol. 54, Princeton: Princeton Univ. Press 1963 Guillemin, V., Pollack, A.: Differential topology. Englewood Cliffs: Prentice-Hall 1974