Critical exponent for semi-linear wave equations with double damping terms in exterior domains

Marcello D’Abbicco1, Ryo Ikehata2, Hiroshi Takeda3
1Department of Mathematics, University of Bari, Bari, Italy
2Department of Mathematics, Graduate School of Education, Hiroshima University, Higashi-Hiroshima, Japan
3Department of Intelligent Mechanical Engineering, Faculty of Engineering, Fukuoka Institute of Technology, Fukuoka, Japan

Tóm tắt

In this paper, we consider wave equations with double damping terms expressed by $$u_{t}$$ and $$-\Delta u_{t}$$ and a power type of nonlinearity $$\vert u\vert ^{p}$$. We are concerned with mixed problems for these equations in exterior domains of a bounded obstacle. A main purpose is to determine a so-called critical exponent of the power p of the nonlinearity $$\vert u\vert ^{p}$$. In particular, in the two dimensional case, our results are optimal, and the critical exponent is given by the Fujita one. This shows a parabolic aspect (as $$t \rightarrow \infty $$) of our equations considered in exterior domains, and one can see that the usual frictional damping $$u_{t}$$ is more dominant than the strong one $$-\Delta u_{t}$$ as $$t \rightarrow \infty $$ even in the nonlinear problem case.

Tài liệu tham khảo

D’Abbicco, M.: A benefit from the \(L^\infty \) smallness of initial data for the semilinear wave equation with structural damping. In: Mityushev, V., Ruzhansky, M. (eds.) Current Trends in Analysis and its Applications. Proceedings of the 9th ISAAC Congress, Krakow 2013, pp. 209–216 (2015). http://www.springer.com/br/book/9783319125763 D’Abbicco, M.: \(L^{1}\)-\(L^{1}\) estimates for a doubly dissipative semilinear wave equation. Nonlinear Differ. Equ. Appl. 24(5), 2307–2336 (2017) D’Abbicco, M., Ebert, M.R.: Diffusion phenomena for the wave equation with structural damping in the \(L^{p}\)-\(L^{q}\) framework. J. Differ. Equ. 256(7), 2307–2336 (2014) D’Abbicco, M., Ebert, M.R.: An application of \(L^p-L^q\) decay estimates to the semilinear wave equation with parabolic-like structural damping. Nonlinear Anal. 99, 16–34 (2014) D’Abbicco, M., Ebert, M.R.: A classification of structural dissipations for evolution operators. Math. Methods Appl. Sci. 39, 2558–2582 (2016) D’Abbicco, M., Ebert, M.R.: A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations. Nonlinear Anal. 149, 1–40 (2017) D’Abbicco, M., Girardi, G., Liang, J.: \(L^1-L^1\) estimates for the strongly damped plate equation. J. Math. Anal. Appl. 478, 476–498 (2019) D’Abbicco, M., Ikehata, R.: Asymptotic profile of solutions for strongly damped Klein–Gordon equations. Math. Methods Appl. Sci. 42, 2287–2301 (2019). https://doi.org/10.1002/mma.5508 D’Abbicco, M., Reissig, M.: Semilinear structural damped waves. Math. Methods Appl. Sci. 37(11), 1570–1592 (2014) Ikeda, M., Inui, T., Okamoto, M., Wakasugi, Y.: \(L^p-L^q\) estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Commun. Pure Appl. Anal. 18, 1967–2008 (2019) Ikehata, R.: Decay estimates of solutions for the wave equations with strong damping terms in unbounded domains. Math. Methods Appl. Sci. 24, 659–670 (2001) Ikehata, R.: Asymptotic profiles for wave equations with strong damping. J. Differ. Equ. 257, 2159–2177 (2014) Ikehata, R., Inoue, Y.: Global existence of weak solutions for two-dimensional semilinear wave equations with strong damping in an exterior domain. Nonlinear Anal. 68, 154–169 (2008) Ikehata, R., Matsuyama, T.: \(L^{2}\)-behaviour of solutions to the linear heat and wave equations in exterior domains. Sci. Math. Jpn. 55, 33–42 (2002) Ikehata, R., Michihisa, H.: Moment conditions and lower bounds in expanding solutions of wave equations with double damping terms. Asymptot. Anal. 114, 19–36 (2019). https://doi.org/10.3233/ASY-181516 Ikehata, R., Ohta, M.: Critical exponents for semilinear dissipative wave equations in \(\mathbf{R}^N\). J. Math. Anal. Appl. 269, 87–97 (2002) Ikehata, R., Sawada, A.: Asymptotic profiles of solutions for wave equations with frictional and viscoelastic damping terms. Asymptot. Anal. 98, 59–77 (2016) Ikehata, R., Tanizawa, K.: Global existence of solutions for semilinear damped wave equations in \(\mathbf{R}^{n}\) with noncompactly supported initial data. Nonlinear Anal. 61, 1189–1208 (2005) Ikehata, R., Takeda, H.: Critical exponent for nonlinear wave equations with frictional and viscoelastic damping terms. Nonlinear Anal. 148, 228–253 (2017) Ikehata, R., Takeda, H.: Large time behavior of global solutions to nonlinear wave equations with frictional and viscoelastic damping terms. Osaka J. Math. 56, 807–830 (2019) Ikehata, R., Takeda, H.: Asymptotic profiles of solutions for structural damped wave equations. J. Dyn. Differ. Equ. 31, 537–571 (2019). https://doi.org/10.1007/s10884-019-09731-8 Ikehata, R., Todorova, G., Yordanov, B.: Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254, 3352–3368 (2013) Laptev, G.G.: Nonexistence results for higher-order evolution partial differential inequalities. Proc. Am. Math. Soc. 131(2), 415–423 (2003) Mitidieri, E., Pohozaev, S.I.: Non-existence of weak solutions for some degenerate elliptic and parabolic problems on \(\mathbf{R}^{n}\). J. Evol. Equ. 1, 189–220 (2001) Narazaki, T., Reissig, M.: \(L^1\) estimates for oscillating integrals related to structural damped wave models. In: Cicognani, M., Colombini, F., Del Santo, D. (eds.) Studies in Phase Space Analysis with Applications to PDEs. Progress in Nonlinear Differential Equations and Their Applications, vol. 84, pp. 215–258. Birkhäuser, New York (2013). https://doi.org/10.1007/978-1-4614-6348-1 Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9(5), 399–418 (1985) Shibata, Y.: On the rate of decay of solutions to linear viscoelastic equation. Math. Methods Appl. Sci. 23, 203–226 (2000) Todorova, G., Yordaniov, B.: Critical exponent for a nonlinear wave equation with damping. J. Differ. Equ. 174, 464–489 (2001) Wakasugi, Y.: On the diffusive structure for the damped wave equation with variable coefficients. Doctoral thesis, Osaka University (2014)