Critical design features of thermal-based radioisotope generators: A review of the power solution for polar regions and space

Renewable and Sustainable Energy Reviews - Tập 119 - Trang 109572 - 2020
Xiawa Wang1, Renrong Liang1, Peter Fisher2,3, Walker Chan2, Jun Xu1
1Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
2Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
3Physics Department, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Tài liệu tham khảo

Jordan, 1954 Ritz, 2004, Multi-mission radioisotope thermoelectric generator (MMRTG) program overview, 2950 Ellery, 2016, Survey of past rover missions, 59 Surkov, 1998, Mars-96 mission: Mars exploration with the use of penetrators, Planet Space Sci, 46, 1689, 10.1016/S0032-0633(98)00071-3 1978, Radioisotope thermoelectric generators of the US Navy, 10 Congress, 1994 Standring, 2007, Environmental, health and safety assessment of decommissioning radioisotope thermoelectric generators (RTGs) in northwest Russia, J Radiol Prot, 27, 321, 10.1088/0952-4746/27/3/005 Sky & Telescope, 2019 Arnold, 1964 Kulcinskim Summerer, 2006, Technical aspects of space nuclear power sources Franco-Ferreira, 1997, Long life radioisotopic power sources encapsulated in platinum metal alloys, Platin Met Rev, 41, 154 Corliss, 1964 Tinsley, 2017, Stephenson K. Update on 241 Am production for use in ra- dioisotope power systems Carney, 2015 Federation of American Scientists Rinehart, 2001, Design characteristics and fabrication of radioisotope heat sources for space missions, Prog Nucl Energy, 39, 305, 10.1016/S0149-1970(01)00005-1 Tate, 1982 Pustovalov, 2007, Role and prospects of application of RTG on base of plutonium-238 for planetary exploration, 12 Gusev, 2011, Milliwatt-power radioisotope thermoelectric generator (RTG) based on plutonium-238, J Electron Mater, 40, 807, 10.1007/s11664-011-1579-z Miotla, 2008 Howe, 2013 Wilson, 2009 Koshurnikova, 2002, Studies on the Mayak nuclear workers: health effects, Radiat Environ Biophys, 41, 29, 10.1007/s00411-001-0130-7 The Times, 1992 2015 2013 Ontario Power Generation, 2017 Ghandhi, 2015, Effect of 90Sr internal emitter on gene expression in mouse blood, BMC Genomics, 16, 586, 10.1186/s12864-015-1774-z Dreicer, 1996 Wischow, 1962 Adams, 2007 2004 OBrien, 2008, Safe radioisotope thermoelectric generators and heat sources for space applications, J Nucl Mater, 377, 506, 10.1016/j.jnucmat.2008.04.009 Sarsfield, 2016, The separation of 241Am from aged plutonium dioxide for use in radioisotope power systems, 180 2019 Barco, 2019, Design and development of the ESA Am-fueled radioisotope power systems Albright, 2005 Johnson SG. reportConsiderations for use of Am-241 for heat source material for radioiso- tope power systems. Idaho Falls(ID): Idaho National Laboratory; 2017 Jan. Report No.:INL/EXT-16-40336-Revision-1. Contract DE-AC07-05ID14517. Sponsored by the Department of Energy. Mangeng, 1984 Dughaish, 2002, Lead telluride as a thermoelectric material for thermoelectric power gen- eration, Phys B Condens Matter, 322, 205, 10.1016/S0921-4526(02)01187-0 Vogt, 1976 Astronautics, 1998 Angelo, 1985 Whalen, 2008, Improving power density and efficiency of miniature radioisotopic thermoelectric generators, J Power Sources, 180, 657, 10.1016/j.jpowsour.2008.01.080 Liu, 2017, Experimental prototype and simulation optimization of micro-radial milliwatt-power radioisotope thermoelectric generator, Appl Therm Eng, 125, 425, 10.1016/j.applthermaleng.2017.07.022 Li, 2019, Fan-Shaped flexible radioisotope thermoelectric generators based on BixTey and BixSb2-xTey fabricated through electrochemical deposition, Energy Technol, 7, 1800707, 10.1002/ente.201800707 Fleurial, 2000, Miniaturized radioisotope solid state power sources, AIP Conf Proc, 504, 1500, 10.1063/1.1290972 Liu, 2018, High-performance and integrated design of thermoelectric generator based on concentric filament architecture, J Power Sources, 393, 161, 10.1016/j.jpowsour.2018.05.018 Yuan, 2018, Screen-printed radial structure micro radioisotope thermoelectric generator, Appl Energy, 225, 746, 10.1016/j.apenergy.2018.05.073 Bux, 2010, Nanostructured materials for thermoelectric applications, Chem Commun (J Chem Soc Sect D), 46, 8311, 10.1039/c0cc02627a Wang, 2008, Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy, Appl Phys Lett, 93, 193121, 10.1063/1.3027060 Joshi, 2008, Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys, Nano Lett, 8, 4670, 10.1021/nl8026795 Shuai, 2017, Recent progress and future challenges on thermoelectric Zintl materials, Mater Today Physics, 1, 74, 10.1016/j.mtphys.2017.06.003 Brown, 2006, b14M nSb11: new high efficiency thermoelectric material for power generation, Chem Mater, 18, 1873, 10.1021/cm060261t Nesbitt, 2012, In situ growth of a Yb2O3 layer for sublimation suppression for Yb14MnSb11 thermoelectric material for space power applications, J Electron Mater, 41, 1267, 10.1007/s11664-011-1875-7 Life testing, 2011, Life testing of Yb14MnSb11 for high performance thermoelectric couples. In: Nuclear and Emerging Technologies for Space, (NETS), 10 Fleurial, 1996, High figure of merit in Ce-filled skutterudites, 91 Shi, 2011, Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports, J Am Chem Soc, 133, 7837, 10.1021/ja111199y May, 2008, Thermoelectric performance of lanthanum telluride produced via mechanical alloying, Phys Rev B, 78, 125205, 10.1103/PhysRevB.78.125205 Li, 2015, Brittle failure mechanism in thermoelectric skutterudite CoSb3, Chem Mater, 27, 6329, 10.1021/acs.chemmater.5b02268 Ma, 2013, Hardness and fracture toughness of thermoelectric La3−xTe4, J Mater Sci, 49, 1150C6 Fleurial JP, Caillat T, Nesmith BJ, Ewell RC, Woerner DF, Carr GC, et al. Thermoelectrics: from space power systems to terrestrial waste heat recovery applications. In: Proceedings of the Thermoelectrics applications Workshop; 2011 Jan 3-6; San Diego,USA. El-Genk, 2005, Performance analysis of cascaded thermoelectric converters for advanced radioisotope power systems, Energy Convers Manag, 46, 1083, 10.1016/j.enconman.2004.06.019 Jarman, 2013, Energy analyses of thermoelectric renewable energy sources, Open J Energy Effic, 2, 143, 10.4236/ojee.2013.24019 Goldsmid, 2014, Bismuth telluride and its alloys as materials for thermoelectric generation, Materials, 7, 2577, 10.3390/ma7042577 2018 May, 2010, Optimizing thermoelectric efficiency in La3−xTe4 via Yb substitution, Chem Mater, 22, 2995, 10.1021/cm1004054 2016 Wong, 2014, Advanced stirling convertor (ASC) development for NASA RPS, 3962 Bowman, 2004, Evaluation of candidate materials for a high- temperature stirling convertor heater head, AIP Conf Proc, 699, 821, 10.1063/1.1649647 Wilson, 2015 Ha, 2010, Reliability demonstration approach for advanced stirling radioisotope generator, 7174 Wong, 2015, Advanced Stirling Convertor (ASC) technology maturation, 3806 Lewandowski, 2012, Testing of the advanced stirling radioisotope generator engineering unit at NASA glenn research center1, 4253 Lewandowski, 2016, Advanced stirling radioisotope generator engineering unit 2 anomaly investigation, 4816 Weber, 1974, A thermoelectric device based on beta-alumina solid electrolyte, Energy Convers, 14, 1, 10.1016/0013-7480(74)90011-4 Bankton, 1983, Experimental and systems studies of the alkali metal thermoelectric converter for aerospace power, J Energy, 7, 442, 10.2514/3.62676 El-Genk, 2004, AMTEC/TE static converters for high energy utilization, small nuclear power plants, Energy Convers Manag, 45, 511, 10.1016/S0196-8904(03)00159-6 Shultis, 2016 Hunt, 1981, High efficiency thermoelectric conversion with beta-alumina electrolytes, the sodium heat engine, Solid State Ion, 5, 263, 10.1016/0167-2738(81)90243-5 Sievers, 1994, Design and testing of AMTEC mini-cells, AIP Conf Proc, 301, 379, 10.1063/1.2950206 Merrill, 1997, Vacuum testing of high efficiency multi-base tube AMTEC cells, 1184 El-Genk, 2003, Energy conversion options for advanced radioisotope power systems, 368 El-Genk, 2002, Performance comparison of potassium and sodium vapor anode, multi-tube AMTEC converters, Energy Convers Manag, 43, 1931, 10.1016/S0196-8904(01)00142-X Schock, 1999, Recommended OSC design and analysis of AMTEC power system for outer-planet missions, AIP Conf Proc, 458, 1534, 10.1063/1.57554 Sievers, 2000, Advanced AMTEC radioisotope power systems for deep space applications, 3074 Tournier, 2003, Design optimization of high-power, liquid anode AMTEC, AIP Conf Proc, 654, 740, 10.1063/1.1541362 Lodhi, 2001, Time-dependent BASE performance and power degradation in AMTEC, J Power Sources, 93, 41, 10.1016/S0378-7753(00)00537-1 Ryan, 2000, Lifetimes of AMTEC electrodes: molybdenum, rhodium-tungsten, and titanium nitride, AIP Conf Proc, 504, 1377, 10.1063/1.1290954 Lamp, 1998, Applications for advanced energy conversion applications, 15 Sulima, 2002, GaSb-, InGaAsSb-, InGaSb- , InAsSbP-and Ge-TPV cells with diffused emitters, 892 Wernsman, 2004, Greater than 20% radiant heat conversion efficiency of a thermophotovoltaic radiator/module system using reflective spectral control, IEEE Trans Electron Devices, 51, 512, 10.1109/TED.2003.823247 Siergiej, 2003, 20% efficient InGaAs/InPAs thermophotovoltaic cells, AIP Conf Proc, 653, 414, 10.1063/1.1539396 Mauk, 2007, Survey of thermophotovoltaic (TPV) devices, 673 Siergiej, 2004, In- GaAsP/InGaAs tandem TPV device, AIP Conf Proc, 738, 480, 10.1063/1.1841927 Babiker SG, Yong S, Sid-Ahmed M, Ming, X. Thermophotovoltaic emitters based on a one-dimensional metallic-dielectric multilayer nanostructures. J Electron Cool Therm Control, 4(1), 39-48. Rinnerbauer, 2012, Recent developments in high-temperature photonic crystals for energy conversion, Energy Environ Sci, 5, 8815, 10.1039/c2ee22731b Lin, 2003, Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation, Appl Phys Lett, 83, 380, 10.1063/1.1592614 Babiker, 2014, One-dimensional Si/SiO2 photonic crystals filter for thermophotovoltaic applications, WSEAS Trans Appl Theor Mech, 9, 97 Crowley, 2005, Thermophotovoltaic converter perfor- mance for radioisotope power systems, AIP Conf Proc, 746, 601, 10.1063/1.1867178 Wernsman, 2005, Advanced thermophotovoltaic devices for space nuclear power systems, AIP Conf Proc, 746, 1441, 10.1063/1.1867275 Chan, 2010, Modeling low- bandgap thermophotovoltaic diodes for high-efficiency portable power generators, Sol Energ Mat Sol, 94, 509, 10.1016/j.solmat.2009.11.015 Day, 1990, Application of the GaSb solar cell in isotope-heated power systems, 1320 Morgan, 1993, Radioisotope thermophotovoltaic power system utilizing the GaSb IR photovoltaic cell, AIP Conf Proc, 271, 313, 10.1063/1.43167 Kelly, 2006, Thermal barrier coatings design with increased reflectivity and lower thermal conductivity for high temperature turbine applications, Int J Appl Ceram Technol, 3, 81, 10.1111/j.1744-7402.2006.02073.x Langley, 1971, Gold coatings for temperature control in space exploration, Gold Bull, 4, 62, 10.1007/BF03215144 Macklin, 1960 Schock, 1997, Design and analysis of radioisotope power system based on revised multitube AMTEC cell design, AIP Conf Proc, 387, 1411 Glazer, 1984 Carvalho, 1969 Anatychuk, 2018, Thermoelectric microgenerators with isotope heat sources Collins, 1969 Vorreiter, 1972 Young, 1963 Chan, 2007, Development of advanced stirling radioisotope generator for space exploration, AIP Conf Proc, 880, 615, 10.1063/1.2437500 Wang, 2016, Toward high performance ra- dioisotope thermophotovoltaic systems using spectral control, Nucl Instrum Methods Phys Res, 838, 28, 10.1016/j.nima.2016.09.028 Lignell, 2001, Micro-power AMTEC systems, IEEE Aerosp Electron Syst Mag, 16, 33, 10.1109/62.911319 Schock, 2002, Design, analyses, and fabrication procedure of Amtec cell, test assembly, and radioisotope power system for outer-planet missions, Acta Astronaut, 50, 471, 10.1016/S0094-5765(01)00168-0 Fihelly, 1970, The SNAP-19 radioisotopic thermoelectric generator experiment, IEEE Trans Geosci Electron, 8, 255, 10.1109/TGE.1970.271419 Lange, 2008, Review of recent advances of radioisotope power systems, Energy Convers Manag, 49, 393, 10.1016/j.enconman.2007.10.028 Wilson, 2015, Overview of stirling technology research at NASA glenn research center, 3905 Juhasz, 1999 Vaughn, 2004 Juhasz, 2000 Bennett, 1986 Bennett, 2008, Mission interplanetary: using radioisotope power to explore the solar system, Energy Convers Manag, 49, 382, 10.1016/j.enconman.2007.06.051 Jerred, 2014, Dual-Mode propulsion system enabling Cubesat exploration of the solar system Amati, 1999, Twin rigid-frames walking microrovers. A perspective for miniaturisation, J Br Interplanet Soc (JBIS), 52, 301 Pustovalov, 1999, Mini-RTGs on plutonium-238: development and application, 509 Lewandowski, 2014, Test program for Stirling radioisotope generator hardware at NASA Glenn Research Center, 3964 Oriti, 2015, Advanced stirling radioisotope generator engineering unit 2 (ASRG EU2) final assembly 2013 Bankston, 1983, Experimental and systems studies of the alkali metal thermoelectric converter for aerospace power, J Energy, 7, 442, 10.2514/3.62676 Huang, 2001, Thermal conductivity measurements of alumina powders and molded Min-K in vacuum, Energy Convers Manag, 42, 599, 10.1016/S0196-8904(00)00085-6 Chubb, 1993, High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells Schock, 1995, Design, analysis, and optimization of a radioisotope thermophotovoltaic (RTPV) generator, and its applicability to an illustrative space mission, Acta Astronaut, 37, 21, 10.1016/0094-5765(95)00071-7 Wolford, 2009 Strauch, 2015, General Atomics radioisotope fueled thermophotovoltaic power systems for space applications, 4114 Anderson, 2005, NASA radioisotope power conversion technology NRA overview, AIP Conf Proc, 746, 421, 10.1063/1.1867158 Tsao, 2017, The high temperature tensile and creep behaviors of high entropy superalloy, Sci Rep, 7, 12658, 10.1038/s41598-017-13026-7 El-Genk, 2005, A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems, J Nucl Mater, 340, 93, 10.1016/j.jnucmat.2004.10.118 Tomboulian, 2014 Datas, 2017, Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: a comprehensive review, Renew Sustain Energy Rev, 73, 477, 10.1016/j.rser.2017.01.071 Wilt, 2003, Monolithic interconnected modules (MIMs) for thermophotovoltaic energy conversion, Semicond Sci Technol, 18, S209, 10.1088/0268-1242/18/5/310 Lou, 2017, Enhanced thermal radiation conversion in a GaSb/GaInAsSb tandem thermophotovoltaic cell, Sol Energy Mater Sol Cells, 172, 124, 10.1016/j.solmat.2017.07.030 Bapat, 1990, Performance prediction of multilayer in- sulation, Cryogenics, 30, 700, 10.1016/0011-2275(90)90234-4 Lin, 1996, Effective emittance for Cassini multilayer insulation blankets and heat loss near seams, J Thermophys Heat Transf, 10, 357, 10.2514/3.795 Massardo, 1997, Solar space power system opti- mization with ultralight radiator, J Propuls Power, 13, 560, 10.2514/2.5203 Qiu, 2012, Development of a novel cascading TPV and TE power generation system, Appl Energy, 91, 304, 10.1016/j.apenergy.2011.09.041 2009 Pustovalov, 1997, Nuclear thermoelectric power units in Russia, USA and European space agency research programs, 559 Furlong, 1999, US space missions using radioisotope power systems, Nuclear News, 42, 26 Launius, 2008, Powering space exploration: U.S. space nuclear power, public perceptions, and outer planetary probes, 5638 Bennett, 1990, Safety status of space radioisotope and reactor power sources, vol. 1, 162 Bellona Bellona Brown, 2018