Critical analysis of polyindole and its composites in supercapacitor application
Tóm tắt
Polyindole-based hybrid composites are being recognized as a promising candidate to be used in energy storage field along with other conjugated organic polymers. Polyindoles themselves are affected with low electrical and electrochemical conductivity; nevertheless, high redox activity, tunable electrical conductivity, significant thermal stability, slow degradation rate, and possible blending property give them upper hand to be used as a good contender. Certain factors viz. electrolyte, concentration, morphology, pH, temperature, etc., are major components affecting performance of Polyindole and its composites. This assessment recapitulates the position of Polyindole and its hybrid composite to be used as energy harvest material; in addition, this evaluation also pronounces the future aspect of the hybrids.
Tài liệu tham khảo
Omar, N., Gualous, H., Salminen, J., Mulder, G., Samba, A., Firouz, Y., Monem, M.A., Van den Bossche, P., Van Mierlo, J.: Electrical double-layer capacitors: evaluation of ageing phenomena during cycle life testing. J. Appl. Electrochem. 44(4), 509–522 (2013). https://doi.org/10.1007/s10800-013-0640-4
Ramya, R., Sivasubramanian, R., Sangaranarayanan, M.V.: Conducting polymers-based electrochemical supercapacitors—progress and prospects. Electrochim. Acta 101, 109–129 (2013). https://doi.org/10.1016/j.electacta.2012.09.116
Senthilkumar, S.T., Selvan, R.K., Lee, Y.S., Melo, J.S.: Electric double layer capacitor and its improved specific capacitance using redox additive electrolyte. J. Mater. Chem. A 1(4), 1086–1095 (2013). https://doi.org/10.1039/c2ta00210h
Inzelt, G.: Conducting polymers: past, present, future. J. Electrochem. Sci. Eng. 8(1), 3–37 (2018). https://doi.org/10.5599/jese.448
Mudila, H., Rana, S., Zaidi, M.G.H.: Supercritical CO2 aided polyindole-graphene nanocomposites for high power density electrode. Adv. Mater. Lett. 8(3), 269–275 (2017). https://doi.org/10.5185/amlett.2017.7018
Tebyetekerwa, M., Yang, S., Peng, S., Xu, Z., Shao, W., Pan, D., Ramakrishna, S., Zhu, M.: Unveiling polyindole: freestanding as-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid state supercapacitors. Electrochim. Acta 247, 400–409 (2017). https://doi.org/10.1016/j.electacta.2017.07.038
Gao, Y.: Graphene and polymer composites for supercapacitor applications: a review. Nanoscale Res. Lett. 12, 387 (2017). https://doi.org/10.1186/s11671-017-2150-5
Phasuksom, K., Sirivat, A.: Synthesis of nano-sized polyindole via emulsion polymerization and doping. Synth. Met. 219, 142–153 (2016). https://doi.org/10.1016/j.synthmet.2016.05.033
Chhattise, P., Handore, K., Horne, A., Mohite, K., Chaskar, A., Dallavalle, S., Chabukswar, V.: Synthesis and characterization of polyindole and its catalytic performance study as a heterogeneous catalyst. J. Chem. Sci. 128(3), 467–475 (2016). https://doi.org/10.1007/s12039-016-1040-1
Pandey, P.C., Prakash, R.: Electrochemical synthesis of polyindole and its evaluation for rechargeable battery applications. J. Electrochem. Soc. 145(3), 999–1003 (1998). https://doi.org/10.1149/1.1838377
Tiwari, M., Kumar, A., Umre, H.S., Prakash, R.: Microwave-assisted chemical synthesis of conducting polyindole: study of electrical property using Schottky junction. J. Appl. Polym. Sci. 132, 27 (2015). https://doi.org/10.1002/app.42192
Ramesan, M.T.: Synthesis and characterization of magnetoelectric nanomaterial composed of Fe3O4 and polyindole. Adv. Polym. Technol. 32(3), 1–9 (2013). https://doi.org/10.1002/adv.21362
Jayakrishnan, P., Ramesan, M.T.: Synthesis, characterization, electrical conductivity and material properties of magnetite/polyindole/poly(vinyl alcohol) blend nanocomposites. J. Inorgan. Organomet Polym Mater. 27(1), 323–333 (2017). https://doi.org/10.1007/s10904-016-0474-8
Cai, Z.J., Zhang, Q., Song, X.Y.: Improved electrochemical performance of polyindole/carbon nanotubes composite as electrode material for supercapacitors. Electron. Mater. Lett. 12(6), 830–840 (2016). https://doi.org/10.1007/s13391-016-6190-2
Abthagir, P.S., Saraswathi, R.: Charge transport and thermal properties of polyindole, polycarbazole and their derivatives. Thermochim. Acta 424, 25–35 (2004). https://doi.org/10.1016/j.tca.2004.04.028
Bethany M.: Surge of green: a sustainable approach to conductive polymers. Undergr Rev, 3, 161–167 (2007). https://core.ac.uk/download/pdf/48824622.pdf (Last accessed on 02 June 2019)
Zhou, W., Xu, J.: Progress in conjugated polyindoles: synthesis, polymerization mechanisms, properties, and applications. Polym. Rev. 57(2), 248–275 (2016). https://doi.org/10.1080/15583724.2016.1223130
Soylu, O., Uzun, S., Can, M.: The investigation of acid effect on chemical polymerization of indole. Colloid Polym. Sci. 289(8), 903–909 (2011)
Giribabu, K., Manigandan, R., Suresh, R., Vijayalakshmi, L., Stephen, A., Narayanan, V.: Polyindole nanowires: synthesis characterization and electrochemical sensing property. Chem. Sci Trans. 2(S1), S13–S16 (2013). https://doi.org/10.7598/cst2013.2
Wenming, Y., Yang, C., Xiaoling, X., Zhiping, Z., Lukuan, L., Wanzhen, X.: Preparation of indole surface molecularly imprinted polymer by atom transfer radical emulsion polymerization and its adsorption performance. J. Mater. Res. 28(19), 2666–2676 (2013). https://doi.org/10.1557/jmr.2013.256
Kumar, A., Kumar, V., Kumar, M., Awasthi, K.: Synthesis and characterization of hybrid PANI/MWCNT nanocomposites for EMI applications. Polym. Compos. (2017). https://doi.org/10.1002/pc.24418
Elango, M., Deepa, M., Subramanian, R., Musthafa, A.M.: Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym. Plast. Technol. Eng. 57(14), 1440–1451 (2017). https://doi.org/10.1080/03602559.2017.1410832
Hassanien, R., Al-Hinai, M., Al-Said, S.A.F., Little, R., Siller, L., Wright, N.G., Houlton, A., Horrocks, B.R.: Preparation and characterization of conductive and photoluminescent DNA-templated polyindole nanowires. ACS Nano. 4(4), 2149–2159 (2010). https://doi.org/10.1021/nn9014533
Zhijiang, C., Guang, Y.: Synthesis of polyindole and its evaluation for Li-ion battery applications. Synth. Met. 160, 1902–1905 (2010). https://doi.org/10.1016/j.synthmet.2010.07.007
Chagas, G.R., Darmanin, T., Guittard, F.: Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles. Beilstein J. Nanotechnol. 6, 2078–2087 (2015). https://doi.org/10.3762/bjnano.6.212
Berkes, B.B., Bandarenka, A.S., Inzelt, G.: Electropolymerization: further insight into the formation of conducting polyindole thin films. J. Phys. Chem. C 119(4), 1996–2003 (2015). https://doi.org/10.1021/jp512208s
Arjomandi, J., Nematollahi, D., Amani, A.: Enhanced electrical conductivity of polyindole prepared by electrochemical polymerization of indole in ionic liquids. J. Appl. Polym. Sci. 131(40094), 1–5 (2014). https://doi.org/10.1002/app.40094
Sarac, A.S., Ozkara, S.: In-situ spectroelectrochemical investigation of indole polymerization. Int. J. Polym. Mater. Polym. Biomater. 53(7), 587–599 (2004). https://doi.org/10.1080/00914030490461702
Xu, J., Hou, J., Zhou, W., Nie, G., Pu, S., Zhang, S.: 1H NMR spectral studies on the polymerization mechanism of indole and its derivatives. Spectrochim. Acta Part A. 63, 723–728 (2006). https://doi.org/10.1016/j.saa.2005.06.025
Singh, V., Chauhan, D.C., Pandey, P.C.: A comparative study on electrochemical synthesis of carboxylic acid substituted indoles and their application in selective oxidation of dopamine. In: IEEE SENSORS 2009 conference. Christchurch, New Zealand. 1140–1145. (2009) https://doi.org/10.1109/icsens.2009.5398578
Cai, Z., Yang, G.: Synthesis of polyindole and its evaluation for Li-ion battery applications. Synth. Met. 160(17–18), 1902–1905 (2010). https://doi.org/10.1016/j.synthmet.2010.07.007
Mudila, H., Rana, S., Zaidi, M.G.H., Alam, S.: Polyindole/graphene oxide nanocomposites: the novel material for electrochemical energy storage. Full. Nanotub. Carbon Nanostruct. 23(1), 20–26 (2013). https://doi.org/10.1080/1536383x.2013.787604
Majumder, M., Choudhary, R.B., Thakur, A.K., Rout, C.S., Gupta, G.: Rare earth metal oxide (RE2O3; RE = Nd, Gd, and Yb) incorporated polyindole composites: gravimetric and volumetric capacitive performance for supercapacitor applications. New J. Chem. 42(7), 5295–5308 (2018). https://doi.org/10.1039/c8nj00221e
Raj, R.P., Ragupathy, P., Mohan, S.: Remarkable capacitive behavior of a Co3O4–polyindole composite as electrode material for supercapacitor applications. J. Mater. Chem. A 3(48), 24338–24348 (2015). https://doi.org/10.1039/c5ta07046e
Handore, K.N., Bhavsar, S.V., Pande, N., Chhattise, P.K., Sharma, S.B., Dallavalle, S., Gaikwad, V., Mohite, K.C., Chabukswar, V.V.: Polyindole-ZnO nanocomposite: synthesis, characterization and heterogeneous catalyst for the 3,4-dihydropyrimidinone synthesis under solvent-free conditions. Polym. Plast. Technol. Eng. 53(7), 734–741 (2014). https://doi.org/10.1080/03602559.2013.877930
Khan, A.A., Khan, M.Q., Hussain, R.: Determination of Cd2+ in aqueous solution using polyindole–Ce(IV) vanadophosphate conductive nanocomposite ion-selective membrane electrode. Mater. Res. Express 4(095024), 1–15 (2017). https://doi.org/10.1088/2053-1591/aa8920
Majumder, M., Choudhary, R.B., Koiry, S.P., Thakur, A.K., Kumar, U.: Gravimetric and volumetric capacitive performance of polyindole/carbon black/MoS 2 hybrid electrode material for supercapacitor applications. Electrochim. Acta 248, 98–111 (2017). https://doi.org/10.1016/j.electacta.2017.07.107
Zhou, X., Chen, Q., Wang, A., Xu, J., Wu, S., Shen, J.: Bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors. ACS Appl. Mater. Interfaces. 8(6), 3776–3783 (2016). https://doi.org/10.1021/acsami.5b10196
Joshi, L., Singh, A.K., Prakash, R.: Polyindole/carboxylated-multiwall carbon nanotube composites produced by in situ and interfacial polymerization. Mater. Chem. Phys. 135(1), 80–87 (2012). https://doi.org/10.1016/j.matchemphys.2012.04.026
Bhagat, D.J., Dhokane, G.R.: AC conductivity investigation of polyindole/poly(vinyl acetate) composites. J. Mater. Sci. 27(11), 11790–11797 (2016). https://doi.org/10.1007/s10854-016-5319-2
Park, I.H., Kwon, S.H., Choi, H.J.: Emulsion-polymerized polyindole nanoparticles and their electrorheology. J. Appl. Polym. Sci. 135(25), 1–9 (2018). https://doi.org/10.1002/app.46384
Sarac, A.S., Ozkara, S., Sezer, E.: Electrocopolymerization of indole and thiophene: conductivity-peak current relationship and in situ spectroelectrochemical investigation of soluble co-oligomers. Int J Polym Anal Charact 8(6), 395–409 (2003). https://doi.org/10.1080/714975024
Zhijiang, C., Ruihan, Z., Xingjuan, S.: Preparation and characterization of polyindole nanofibers by electrospinning method. Synth. Met. 162(23), 2069–2074 (2012). https://doi.org/10.1016/j.synthmet.2012.09.019
Wu, J., Zhou, W., Jiang, F., Chang, Y., Zhou, Q., Li, D., Ye, G., Li, C., Nie, G., Xu, J., Li, T., Du, Y.: Three-dimensional porous carbon derived from polyindole hollow nanospheres for high-performance supercapacitor electrode. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00722
Zhou, W., Huang, D., Ma, X., Xu, J., Jiang, F., Lu, B., Zhu, D.: Porous poly(5-cyanoindole) electrode with high capacitance. Adv Mater Res 1053, 235–239 (2014). https://doi.org/10.4028/www.scientific.net/AMR.1053.235
Ma, X., Zhou, W., Mo, D., Hou, J., Xu, J.: Effect of substituent position on electrodeposition, morphology, and capacitance performance of polyindole bearing a carboxylic group. Electrochim. Acta 176, 1302–1312 (2015). https://doi.org/10.1016/j.electacta.2015.07.148
Wang, W., Ren, G., Wang, M., Liu, Y., Wu, S., Shen, J.: A novel composite for energy storage devices: core–shell MnO2/polyindole nanotubes supported on reduced graphene oxides. J. Mater. Sci.: Mater. Electron. 29(7), 5548–5560 (2018). https://doi.org/10.1007/s10854-018-8523-4
Ozkazanc, H.: Characterization and charge transfer mechanism of PIN–CdSe nanocomposites. Polym. Compo. 37(10), 1–9 (2015). https://doi.org/10.1002/pc.23503
Khati, K., Joshi, I., Bisht, A., Zaidi, M.G.H.: Haemoglobin/polyindole composites: the novel material for electrochemical supercapacitors. Bull. Mater. Sci. 42(1), 1–6 (2019). https://doi.org/10.1007/s12034-018-1700-5
Verma, C.J., Pandey, R.K., Prakash, R.: In situ one step synthesis of Fe inserted octaethylporphyrin/polyindole: a multifunctional hybrid material with improved electrochemical and electrical properties. Mater. Sci. Eng. B 227, 80–88 (2018). https://doi.org/10.1016/j.mseb.2017.10.015
Majumder, M., Choudhary, R.B., Thakur, A.K.: Hemispherical nitrogen-doped carbon spheres integrated with polyindole as high performance electrode material for supercapacitor applications. Carbon 142, 650–661 (2019). https://doi.org/10.1016/j.carbon.2018.10.089
Rajasudha, G., Shankar, H., Thangadurai, P., Boukos, N., Narayanan, V., Stephen, A.: Preparation and characterization of polyindole–ZnO composite polymer electrolyte with LiClO4. Ionics 16, 839–848 (2010). https://doi.org/10.1007/s11581-010-0472-8
Rajasudha, G., Nancy, A.P., Thangadurai, P., Boukos, N., Narayanan, V., Stephen, A.: Synthesis and characterization of polyindole–NiO-based composite polymer electrolyte with LiClO4, international journal of polymeric materials and polymeric. Biomaterials 60(11), 877–892 (2011). https://doi.org/10.1080/00914037.2010.551367
Rajasudha, G., Jayan, L.M., Lakshmi, D.D., Thangadurai, P., Boukos, N., Narayanan, V., Stephen, A.: Polyindole–CuO composite polymer electrolyte containing LiClO4 for lithium ion polymer batteries. Polym. Bull. 68, 181–196 (2012). https://doi.org/10.1007/s00289-011-0548-2
Rajasudha, G., Lakshmi, D.D., Thangadurai, P., Boukos, N., Narayanan, V., Stephen, A.: Preparation and characterization of polyindole-iron oxide composite polymer electrolyte containing LiClO4. Polym. Plast. Technol. Eng. 51(3), 225–230 (2012). https://doi.org/10.1080/03602559.2011.618159
Oraon, R., Adhikari, A.D., Tiwari, S.K., Bhattacharyya, S., Nayak, G.C.: Hierarchical self-assembled nanoclay derived mesoporous CNT/polyindole electrode for supercapacitors. RSC Adv. 6, 64271–64284 (2016). https://doi.org/10.1039/C6RA12938B
Tebyetekerwa, M., Xu, Z., Li, W., Wang, X., Marriam, I., Peng, S., Ramkrishna, S., Yang, S., Zhu, M.: Surface self-assembly of functional electroactive nanofibers on textile yarns as a facile approach toward super flexible energy storage. ACS Appl. Energy Mater. 1(2), 377–386 (2017). https://doi.org/10.1021/acsaem.7b00057
Zhou, X., Wang, A., Pan, Y., Yu, C., Zou, Y., Zhou, Y., Chen, Q., Wu, S.: Facile synthesis of a Co3O4@carbon nanotubes/polyindole composite and its application in all-solid-state flexible supercapacitors. J. Mater. Chem. A 3(24), 13011–13015 (2015). https://doi.org/10.1039/c5ta01906k
Purty, B., Choudhary, R.B., Biswas, A., Udayabhanu, G.: Chemically grown mesoporous f-CNT/α-MnO2/PIn nanocomposites as electrode materials for supercapacitor application. Polym. Bull. 76(4), 1619–1640 (2019). https://doi.org/10.1007/s00289-018-2458-z
Ramesan, M.T., Anjitha, T., Parvathi, K., Anil kumar, T., Mathew, G.: Nano zinc ferrite filler incorporated polyindole/poly(vinyl alcohol) blend: preparation, characterization, and investigation of electrical properties. Adv. Polym. Technol. 37(8), 3639–3649 (2018). https://doi.org/10.1002/adv.22148
Bhagat, D.J., Dhokane, G.R.: Electro-optical properties of one pot synthesized polyindole in the presence of poly(vinyl acetate). Electron. Mater. Lett. 11(3), 346–351 (2015). https://doi.org/10.1007/s13391-015-4426-1
Eraldemir, O., Sari, B., Gok, A., Unal, H.I.: Synthesis and characterization of polyindole/poly(vinyl acetate) conducting composites. J. Macromol. Sci. Part A Pure Appl. Chem. 45(3), 205–211 (2008). https://doi.org/10.1080/10601320701839890
Gergin, I., Gokceoren, A.T., Sarac, A.S.: Synthesis and electrochemical investigation of polyindole based fiber as sensor electrode by EIS method. Fibers Polym. 16(7), 1468–1477 (2015). https://doi.org/10.1007/s12221-015-5144-x
Kuo, C.W., Wu, T.Y., Fan, S.C.: Applications of poly(indole-6-carboxylic acid-co-2,2′-bithiophene) films in high-contrast electrochromic devices. Coatings 8(3), 102 (2018). https://doi.org/10.3390/coatings8030102
Gupta, B., Chauhan, D.S., Prakash, R.: Controlled morphology of conducting polymers: formation of nanorods and microspheres of polyindole. Mater. Chem. Phys. 120, 625–630 (2010). https://doi.org/10.1016/j.matchemphys.2009.12.026
Zhijiang, C., Xingjuan, S., Yanan, F.: Electrochemical properties of electrospun polyindole nanofibers as a polymer electrode for lithium ion secondary battery. J. Power Sour. 277, 53–59 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.081
Jayakrishnan, P., Pradyumnan, P.P., Ramesan, M.T.: Thermal and electrical properties of polyindole/magnetite nanocomposites. Chem. J. Am. Inst. Chem. 89(1), 27–32 (2016)
Rajasudha, G., Narayanan, V., Stephen, A.: Effect of iron oxide on ionic conductivity of polyindole based composite polymer electrolytes. Adv. Mater. Res. 584, 536–540 (2012). https://doi.org/10.4028/www.scientific.net/amr.584.536
Ma, X., Zhou, W., Mo, D., Wan, Z., Xu, J.: Capacitance comparison of poly(indole-5-carboxylic acid) in different electrolytes and its symmetrical supercapacitor in HClO4 aqueous electrolyte. Synth. Met. 203, 98–106 (2015). https://doi.org/10.1016/j.synthmet.2015.02.025
Berkes, B.B., Inzelt, G.: Electrochemical nanogravimetric studies on the electropolymerization of indole and on polyindole. Electrochim. Acta 122, 11–15 (2014). https://doi.org/10.1016/j.electacta.2013.06.035
Wadatkar, N.S., Waghuley, S.A.: Complex optical studies on conducting polyindole as-synthesized through chemical route. Egyp. J. Basic Appl. Sci. 2(1), 19–24 (2015). https://doi.org/10.1016/j.ejbas.2014.12.006
Nateghi, M.R., Frahmand, S., Mirjalili, G.: Optical constants of electrochemically synthesized polyindole and poly(5-carboxilic acid indole). Polym. Sci. Ser. A 56(4), 459–464 (2014). https://doi.org/10.1134/s0965545x14040117
Rejania, P., Beena, B.: Structural and optical properties of polyindole-manganese oxide nanocomposite. Indian J. Adv. Chem. Sci. 2(3), 244–248 (2013)
Bhagat, D.J., Bajaj, N.S., Dhokane, G.R.: Electro–optical properties of poly(vinyl acetate)/polyindole composite film. Am Inst Phys 1728, 020171 (2016). https://doi.org/10.1063/1.4946222
Abthagir, P.S., Dhanalakshmi, K., Saraswathi, R.: Thermal studies on polyindole and polycarbazole. Synth. Met. 93, 1–7 (1998)
Wang, W., Wu, S.: A new ternary composite based on carbon nanotubes/polyindole/graphene with preeminent electrocapacitive performance for supercapacitors. Appl. Surf. Sci. 396, 1360–1367 (2017). https://doi.org/10.1016/j.apsusc.2016.11.167
Li, D., Zhu, D., Zhou, W., Ma, X., Zhou, Q., Ye, G., Xu, J.: Porous multilayered films based on poly(3,4-ethylenedioxythiophene) and poly(indole-5-carboxylic acid) and their capacitance performance. Int. J. Electrochem. Sci. 12, 2741–2753 (2017). https://doi.org/10.20964/2017.04.65
Tebyetekerwa, M., Wang, X., Marriam, I., Dan, P., Yang, S., Zhu, M.: Green approach to fabricate polyindole composite nanofibers for energy and sensor applications. Mater. Lett. 209, 400–403 (2017). https://doi.org/10.1016/j.matlet.2017.08.062