Critical Role of the Interaction Gut Microbiota – Sympathetic Nervous System in the Regulation of Blood Pressure
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adnan, 2017, Alterations in the gut microbiota can elicit hypertension in rats., Physiol. Gen., 49, 96, 10.1152/physiolgenomics.00081.2016
Ahmad, 2012, Exogenous hydrogen sulfide (H2S) reduces blood pressure and prevents the progression of diabetic nephropathy in spontaneously hypertensive rats., Ren. Fail., 34, 203, 10.3109/0886022X.2011.643365
Bergersen, 2002, Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system., Neurochem. Res., 27, 89, 10.1023/A:1014806723147
Bermejo, 2003, In vivo vascular effects of genistein on a rat model of septic shock induced by lipopolysaccharide., J. Cardiovasc. Pharmacol., 42, 329, 10.1097/00005344-200309000-00003
Bruce-Keller, 2015, Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity., Biol. Psychiatry., 77, 607, 10.1016/j.biopsych.2014.07.012
Cani, 2007, Metabolic endotoxemia initiates obesity and insulin resistance., Diabetes Metab. Res. Rev, 56, 1761, 10.2337/db06-1491
Cani, 2008, Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice., Diabetes Metab. Res. Rev, 57, 1470, 10.2337/db07-1403
DiBona, 2013, Sympathetic nervous system and hypertension., Hypertension, 61, 556, 10.1161/HYPERTENSIONAHA.111.00633
D’Souza, 2017, Differing roles for short chain fatty acids and GPR43 agonism in the regulation of intestinal barrier function and immune responses., PLoS One, 12, 10.1371/journal.pone.0180190
Duan, 2015, Gene transfer of cystathionine β-synthase into RVLM increases hydrogen sulfide-mediated suppression of sympathetic outflow via KATP channel in normotensive rats., Am. J. Physiol. Heart Circ. Physiol., 308, H603, 10.1152/ajpheart.00693.2014
Fernandes, 2007, Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems., Am. J. Physiol. Cell Physiol., 292, C413, 10.1152/ajpcell.00188.2006
Gao, 2005, Sympathoexcitation by central ANG II: roles for AT1 receptor upregulation and NAD(P)H oxidase in RVLM., Am. J. Physiol. Heart Circ. Physiol., 288, H2271, 10.1152/ajpheart.00949.2004
Gomez-Arango, 2016, Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy., Hypertension, 68, 974, 10.1161/HYPERTENSIONAHA.116.07910
Grassi, 2015, The sympathetic nervous system alterations in human hypertension., Circ. Res., 116, 976, 10.1161/CIRCRESAHA.116.309261
Judy, 1976, Sympathetic nerve activity: role in regulation of blood pressure in the spontaenously hypertensive rat., Circ Res., 38, 21, 10.1161/01.RES.38.6.21
Kimura, 2011, Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)., Proc. Natl. Acad. Sci. U. S. A., 108, 8030, 10.1073/pnas.1016088108
Li, 2017, Gut microbiota dysbiosis contributes to the development of hypertension., Microbiome., 5, 10.1186/s40168-016-0222-x
Liang, 2013, Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4., Arterioscler. Thromb. Vasc. Biol., 33, 777, 10.1161/ATVBAHA.112.301087
Lopez Verrilli, 2009, Angiotensin-(1- 7) through AT2 receptors mediates tyrosine hydroxylase degradation via the ubiquitin-proteasome pathway., J. Neurochem., 109, 326, 10.1111/j.1471-4159.2009.05912.x
Mell, 2015, Evidence for a link between gut microbiota and hypertension in the dahl rat., Physiol. Genomics, 47, 187, 10.1152/physiolgenomics.00136.2014
Natarajan, 2016, Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41., Physiol. Genomics, 48, 826, 10.1152/physiolgenomics.00089.2016
Natarajan, 2014, From microbe to man: the role of microbial short chain fatty acid metabolites in host cell biology., Am. J. Physiol. Cell Physiol., 307, C979, 10.1152/ajpcell.00228.2014
Nøhr, 2015, Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia., Neuroscience, 290, 126, 10.1016/j.neuroscience.2015.01.040
Pechánová, 2004, Vasoactive systems in L-NAME hypertension: the role of inducible nitric oxide synthase., J. Hyper., 22, 167, 10.1097/00004872-200401000-00026
Pluznick, 2014, A novel SCFA receptor, the microbiota, and blood pressure regulation., Gut Microb., 5, 202, 10.4161/gmic.27492
Pluznick, 2013, Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation., Proc. Natl. Acad. Sci. U. S. A., 110, 4410, 10.1073/pnas.1215927110
Reja, 2002, Cathecolamine-related gene expression correlates with blood pressures in SHR., Hypertension, 40, 342, 10.1161/01.HYP.0000027684.06638.63
Robles-Vera, 2018, The probiotic Lactobacillus fermentum prevents dysbiosis and vascular oxidative stress in rats with hypertension induced by chronic nitric oxide blockade., Mol. Nutr. Food Res., 62, 10.1002/mnfr.201800298
Romero, 2016, Vascular and central activation of peroxisome proliferator-activated receptor-β attenuates angiotensin II-induced hypertension: role of RGS-5., J. Pharmacol. Exp. Ther., 358, 151, 10.1124/jpet.116.233106
Santisteban, 2016, Brain-gut-bone marrow axis: implications for hypertension and related therapeutics., Circ. Res., 118, 1327, 10.1161/CIRCRESAHA.116.307709
Santisteban, 2017, Hypertension-linked pathophysiological alterations in the gut., Circ. Res., 120, 312, 10.1161/CIRCRESAHA.116.309006
Sato, 2014, Gut dysbiosis and detection of “live gut bacteria” in blood of japanese patients with type 2 diabetes., Diabetes Care, 37, 2343, 10.2337/dc13-2817
Sun, 2016, Clostridium butyricum pretreatment attenuates cerebral ischemia/reperfusion injury in mice via anti-oxidation and anti-apoptosis., Neurosci. Lett., 613, 30, 10.1016/j.neulet.2015.12.047
Toral, 2015, Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction., Clin. Sci., 129, 823, 10.1042/CS20150111
Toral, 2018, Lactobacillus fermentum improves tacrolimus-induced hypertension by restoring vascular redox state and improving eNOS coupling., Mol. Nutr. Food Res., 10.1002/mnfr.201800033
Tsioufis, 2011, Pathophysiology of resistant hypertension: the role of sympathetic nervous system., Int. J. Hypertens., 2011, 10.4061/2011/642416
Vijay, 2014, Role of monocarboxylate transporters in drug delivery to the brain., Curr. Pharm. Des., 20, 1487, 10.2174/13816128113199990462
Wu, 2012, Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation., J. Neuroinflamm., 9, 10.1186/1742-2094-9-212
Yang, 2018, Implication of G protein-coupled receptor 43 in intestinal inflammation: a mini-review., Front. Immunol., 9, 10.3389/fimmu.2018.01434
Yang, 2017, Shifts in the gut microbiota composition due to depleted bone marrow beta adrenergic signaling are associated with suppressed inflammatory transcriptional networks in the mouse colon., Front. Physiol., 8, 10.3389/fphys.2017.00220
Yang, 2015, Gut dysbiosis is linked to hypertension., Hypertension, 65, 1331, 10.1161/HYPERTENSIONAHA.115.05315
Yang, 2017, Gut-brain axis in regulation of blood pressure., Front. Physiol., 2017, 10.3389/fphys.2017.00845
Yu, 2018, Effects of Rubus coreanus byproducts on intestinal microbiota and the immune modulation., Asia Aus. J. Anim. Sci., 31, 429, 10.5713/ajas.17.0733
Yu, 1996, Angiotensin II regulation of tyrosine hydroxylase gene expression in the neuronal cultures of normotensive and spontaneously hypertensive rats., Endocrinology, 137, 3566, 10.1210/endo.137.8.8754788
Zarzuelo, 2011, Antihypertensive effects of peroxisome proliferator-activated receptor-β activation in spontaneously hypertensive rats., Hypertension, 58, 733, 10.1161/HYPERTENSIONAHA.111.174490
Zhang, 2010, Centrally administered lipopolysaccharide elicits sympathetic excitation via NAD(P)H oxidase-dependent mitogen-activated protein kinase signaling., J. Hyper., 8, 806, 10.1097/HJH.0b013e3283358b6e