Critical Reappraisal of Casagrande and Taylor Methods for Coefficient of Consolidation
Tóm tắt
Conventionally the experimental time-settlement data from an oedometer test are analyzed by standard curve-fitting methods, Casagrande’s log t method and Taylor’s root t method. This allows determination of the end of primary consolidation parameters, (EOP) as well as coefficient of consolidation, cv. Mentioned methods use both the initial and later part of the consolidation curve and are influenced by initial and secondary consolidation effects. In this study, the settlement-time data gathered from conventional oedometer tests conducted on various cohesive soils were analyzed. To assess the validity of each cv value, the experimental results were compared with the theoretical degree of consolidation curve and quantified using the scalar error function. The predictive ability of the Terzaghi consolidation model is also discussed. Based on the comparative study it has been revealed that Casagrande and Taylor methods are insufficient to correctly determine the consolidation parameters.
Tài liệu tham khảo
Al-Zoubi, M. S. (2008). “Coefficient of consolidation by the slope method.” ASTM Geotechnical Testing Journal, Vol. 31, No. 6, pp. 526–530, DOI: https://doi.org/10.1520/GTJ20130097.
Al-Zoubi, M. S. (2010). “Consolidation analysis using the settlement rate-settlement (SRS) method” Applied Clay Science, Vol. 50, No. 1, pp. 34–40, DOI: https://doi.org/10.1016/j.clay.2010.06.020
Al-Zoubi, M. S. (2015). “Consolidation analysis by the extended taylor method (ETM).” Jordan Journal of Civil Engineering, Vol. 9, No. 1, pp. 71–83, DOI: https://doi.org/10.12816/0024606.
Calvello, M. and Finno, R. J. (2004). “Selecting parameters to optimize in model calibration by inverse analysis.” Computers and Geotechnics, Vol. 31, No. 5, pp. 410–424, DOI: https://doi.org/10.1016/j.compgeo.2004.03.004.
Casagrande, A. and Fadum, R. E. (1940). Notes on soil testing for engineering purposes, Harvard Soil Mechanics Series, No. 8, Cambridge, Massachusetts, M.A., pp. 71.
Crawford, C. B. (1986). “State of the Art: Evaluation and interpretation of soil consolidation tests.” Consolidation of Soils: Testing and Evaluation, ASTM International, Philadelphia, PA, USA, DOI: https://doi.org/10.1520/STP34607S.
Dobak, P. and Dziedzic, A. (2000). “Interpretacja badań konsolidacji z zastosowaniem opcji programowych arkusza kalkulacyjnego.” Proc. The XII, Konferencja Naukowa Korbielów2000. Metody Komputerowe w Projektowaniu i Analizie Konstrukcji Hydrotechnicznych, Korbielów, Poland, pp. 1–10.
Dobak, P. and Gaszyński, J. (2015). “Evaluation of soil permeability from consolidation analysis based on Terzaghi’s and Biot’s theory.” Geological Quarterly, Vol. 59, No. 2, pp. 373–381, DOI: https://doi.org/10.7306/gq.1197.
Duncan, J. M. (1993). “Limitations of conventional analysis of consolidation settlement.” Journal of Geotechnical Engineering, Vol. 119, No. 9, pp. 1333–1359.
Grimstad, G., Degago S. A., Nordal S., and Karstunen M. (2010). “Modeling creep and rate effects in structured anisotropic soft clays.” Acta Geotechnica, Vol. 6, pp. 69–81, DOI: https://doi.org/10.1007/s11440-010-0119-y.
Indraratna, B., Chu, J.. and Rujikiatkamjorn, C. (2015). Ground improvement case histories: Embankments with special reference to consolidation and other physical methods, Butterworth-Heinemann, Oxford, UK, pp. 1–23.
Jin, Y.-F., Yin, Z.-Y., Shen, S.-L., and Zhang, D.-M. (2016). “A new hybrid real-coded genetic algorithm and its application to parameters identification of soils.” Inverse Problems in Science and Engineering, Vol. 2016, pp. 1–24, DOI: https://doi.org/10.1080/17415977.2016.1259315.
Leroueil, S. (1987). “Tenth canadian colloquium: Recent developments in consolidation of natural clays.” Canadian Geotechnical Journal, Vol. 25, No. 1, pp. 85–107, DOI: https://doi.org/10.1139/t88-010.
Levasseur, S., Malécot, Y., Boulon, M., and Flavigny, E. (2008). “Soil parameter identification using a genetic algorithm.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 32, No. 2, pp. 189–213, DOI: https://doi.org/10.1002/nag.614.
Lovisa, J. and Sivakugan, N. (2013). “An in-depth comparison of cv values determined using common curve-fitting — Techniques.” Geotechnical Testing Journal, Vol. 36, No. 1, pp. 1–10, DOI: https://doi.org/10.1520/GTJ20120038.
Malécot, Y., Levasseur, S., Boulon, M., and Flavigny, E. (2004). “Inverse analysis of in-situ geotechnical measurements using a genetic algorithm.” Proc. The Ninth International Symposium on Numerical Models in Geomechanics — NUMOGIX’, Ottawa, Canada.
Mesri, G. and Feng, T. W. (2014). “Consolidation of soils.” Geotechnical Special Publication, Vol. 233, pp. 322–337, DOI: https://doi.org/10.1061/9780784413265.026.
Olek, B. S. (2017). Quasi-filtration phase of consolidation identification in terms of the new interpretation method of consolidometric test, Ph.D. Dissertation, AGH University of Science and Technology, Krakow, Poland.
Olek, B. S. (2018). “Consolidation analysis of clayey soils using analytical tools.” Acta Geotechnica Slovenica, Vol. 2018, No 2, pp. 58–73, DOI: https://doi.org/10.18690/actageotechslov.15.2.58-73.2018.
Olek, B. S. and Woźniak, H. (2016). “Determination of quasi-filtration phase of consolidation based on experimental and theoretical course of the uniaxial deformation and distribution of pore pressure.” Geology, Geophysics & Environment, Vol. 42, No. 3, pp. 353–363, DOI: https://doi.org/10.7494/geol.2016.42.3.353.
Pal, S., Wathugala, W. G., and Kundu, S. (1996). “Calibration of a constitutive model using genetic algorithms.” Computers and Geotechnics, Vol. 19, No. 4, pp. 325–348, DOI: https://doi.org/10.1016/S0266-352X(96)00006-7.
Robinson, R. G. (1999). “Consolidation analysis with pore water pressure measurements.” Géotechnique, Vol. 49, No. 1, pp. 127–132, DOI: https://doi.org/10.1680/geot.1999.49.1.127.
Sebai, S. and Belkacemi, S. (2016). “Consolidation coefficient by combined probabilistic and least residuals methods.” Geotechnical Testing Journal, Vol. 39, No. 5, pp. 891–897, DOI: https://doi.org/10.1520/GTJ20150197.
Shukla, S., Sivakugan, N., and Das, B. (2009). “Methods for determination of the coefficient of consolidation and field observations of time rate of settlement — An overview.” International Journal of Geotechnical Engineering, Vol. 3, No. 1, pp. 89–108, DOI: https://doi.org/10.3328/IJGE.2009.03.01.89-108.
Sridharan, A. and Prakash, K. (1995). “Discussion on limitations of conventional analysis of consolidation settlement.” ASCE Journal of Geotechnical Engineering, Vol. 121, No. 6, pp. 517.
Sridharan, A. Prakash, K. and Asha, S. (1995). “Consolidation behavior of soils.” Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58–68, DOI: https://doi.org/10.1520/GTJ10122J.
Suhonen, K. (2009). Creep of soft clay, PhD Dissertation, Aalto University, Helsinki, Finland.
Taylor, D. W. (1948). Fundamentals of soil mechanics, John Wiley and Sons, New York, N.Y., pp. 238–239.
Terzaghi, K. (1923). “Die berechnung der durchlassigkeitzifer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen.” Mathematish-Naturwissenschaftliche, Akademie der Wissenschaften, Vol. 132, pp. 125–138 (in German).
Terzaghi, K. and Peck, R. B. (1967). Soil mechanics in engineering practice. John Wiley & Sons, New York, N.Y., pp. 100–103.
Tewatia, S. (1998). “Evaluation of true c v and instantaneous c v, and isolation of secondary consolidation.” Geotechnical Testing Journal, Vol. 21, No. 2, pp. 102–108, DOI: https://doi.org/10.1520/GTJ10748J.
Tewatia, S. K., Bose, S. K. Sridharan, A., and Rath, S. (2007). “Stress induced time dependent behavior of clayey soils.” Geotechnical Geological Engineering, Vol. 25, No. 2, pp. 239–255, DOI: https://doi.org/10.1007/s10706-006-9107-2.
Tewatia, S. K., Sridharan, A., Phalswal, M. K., Singh, M., and Rath, S. (2012). “Fastest rapid loading methods of vertical and radial consolidations.” International Journal of Geomechanics, Vol. 13, No. 4, pp. 332–339, DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0000213.
Tewatia, S. K. and K. Venkatachalam, K. (1997). “Improved √t method to evaluate consolidation test results.” Geotechnical Testing Journal, Vol. 20, No. 1, pp. 121–125, DOI: https://doi.org/10.1520/GTJ11426J.
Wong, L. S., Hashim, R., and Ali, F. H. (2009). “A review on hydraulic conductivity and compressibility of peat.” Journal of Applied Sciences, Vol. 9, No. 19, pp. 3207–3218, DOI: https://doi.org/10.3923/jas.2009.3207.3218.
Yin, Z.-Y., Jin, Y.-F., Shen, J. S., and Hicher, P. Y. (2017). “Optimization techniques for identifying soil parameters in geotechnical engineering: Comparative study and enhancement.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 2018, No. 42, pp. 70–94, DOI: https://doi.org/10.1002/nag.2714.
Zhu, Q.-Y., Yin, Z.-Y., Zhang, D.-M., and Huang, H.-W. (2017). “Numerical modeling of creep degradation of natural soft clays under one-dimensional condition.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 5, pp. 1668–1678, DOI: https://doi.org/10.1007/s12205-016-1026-016-1026-z.