Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density
Tóm tắt
Từ khóa
Tài liệu tham khảo
Agler, 2011, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol., 29, 70, 10.1016/j.tibtech.2010.11.006
Angenent, 2016, Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals, Environ. Sci. Technol., 50, 2796, 10.1021/acs.est.5b04847
Angenent, 2002, Microbial community structure and activity in a compartmentalized, anaerobic bioreactor, Water Environ. Res., 74, 450, 10.2175/106143002X140242
Arends, 2017, Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community, J. CO2 Util., 20, 141, 10.1016/j.jcou.2017.04.014
Aryal, 2016, Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis, Electrochim. Acta, 217, 117, 10.1016/j.electacta.2016.09.063
Bajracharya, , Bioelectrochemical conversion of CO2 to chemicals: CO2 as next generation feedstock for the electricity-driven bioproduction in batch and continuous mode, Faraday Discuss., 433, 10.1039/C1037FD00050B
Bajracharya, , Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis, Bioelectrochemistry, 113, 26, 10.1016/j.bioelechem.2016.09.001
Batlle-Vilanova, 2017, Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction, Bioelectrochemistry, 117, 57, 10.1016/j.bioelechem.2017.06.004
Blanchet, 2015, Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction, Energy Environ. Sci., 8, 3731, 10.1039/C5EE03088A
Chen, 2002, Acid–base enrichment enhances anaerobic hydrogen production process, Appl. Microbiol. Biotechnol., 58, 224, 10.1007/s002530100814
Chen, 2017, Production of caproic acid from mixed organic waste – an environmental life cycle perspective, Environ. Sci. Technol., 51, 7159, 10.1021/acs.est.6b06220
Chen, 2016, Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation, Biomass Bioenergy, 93, 201, 10.1016/j.biombioe.2016.07.008
Cui, 2017, Three-dimensional hierarchical metal oxide-carbon electrode material for high efficient microbial electrosynthesis, Sustainable Energy Fuels, 1, 1171, 10.1039/C7SE00073A
Ganigue, 2015, Microbial electrosynthesis of butyrate from carbon dioxide, Chem. Commun., 51, 3235, 10.1039/C4CC10121A
González-Cabaleiro, 2013, Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses, Energy Environ. Sci., 6, 3780, 10.1039/c3ee42754d
Graves, 2006, Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash, J. Ind. Microbiol. Biotechnol., 33, 469, 10.1007/s10295-006-0091-6
Grootscholten, , Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production, Bioresour. Technol., 135, 440, 10.1016/j.biortech.2012.10.165
Grootscholten, , Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter, Bioresour. Technol., 136, 735, 10.1016/j.biortech.2013.02.114
Im, 2016, Biologically activated graphite fiber electrode for autotrophic acetate production from CO2 in a bioelectrochemical system, Carbon Lett., 20, 76, 10.5714/CL.2016.20.076
Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F
Jourdin, , Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source, Bioelectrochemistry, 102, 56, 10.1016/j.bioelechem.2014.12.001
Jourdin, , High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide, Environ. Sci. Technol., 49, 13566, 10.1021/acs.est.5b03821
Jourdin, , Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved design and operating conditions, Environ. Sci. Technol., 50, 1982, 10.1021/acs.est.5b04431
Jourdin, , Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide, ChemElectroChem, 3, 581, 10.1002/celc.201500530
Jourdin, 2017, “Electrodes for cathodic microbial electrosynthesis processes: key-developments and criteria for effective research & implementation,”, Functional Electrodes for Enzymatic and Microbial Bioelectrochemical Systems, 429, 10.1142/9781786343543_0012
Kleerebezem, 2015, Anaerobic digestion without biogas?, Rev. Environ. Sci. Biotechnol., 14, 787, 10.1007/s11157-015-9374-6
Koutinas, 2016, Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources, Bioresour. Technol., 204, 55, 10.1016/j.biortech.2015.12.005
Kucek, , Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome, Water Res., 93, 163, 10.1016/j.watres.2016.02.018
Kucek, , High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation, Energy Environ. Sci., 9, 3482, 10.1039/C6EE01487A
LaBelle, 2017, Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate, Front. Microbiol., 8, 756, 10.3389/fmicb.2017.00756
Larsen, 2015, Cable bacteria associated with long-distance electron transport in New England salt marsh sediment, Environ. Microbiol. Rep., 7, 175, 10.1111/1758-2229.12216
Li, 2015, Significant performance enhancement of a UASB reactor by using acyl homoserine lactones to facilitate the long filaments of Methanosaeta harundinacea 6Ac, Appl. Microbiol. Biotechnol., 99, 6471, 10.1007/s00253-015-6478-4
Liu, 2017, Significant enhancement by biochar of caproate production via chain elongation, Water Res., 119, 150, 10.1016/j.watres.2017.04.050
Lovley, 2011, Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination, Energy Environ. Sci., 4, 4896, 10.1039/c1ee02229f
Marshall, 2017, Metabolic Reconstruction and Modeling Microbial Electrosynthesis, BioRxiv 059410., 7, 10.1038/s41598-017-08877-z
Martin, 2013, A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2, Archaea, 2013, 157529, 10.1155/2013/157529
Marzocchi, 2014, Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment, ISME J., 8, 1682, 10.1038/ismej.2014.19
Mekonnen, 2016, Four billion people facing severe water scarcity, Sci. Adv., 2, e1500323, 10.1126/sciadv.1500323
Parshina, 2014, Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature, Int. J. Syst. Evol. Microbiol., 64, 180, 10.1099/ijs.0.056218-0
Patil, , Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol., 49, 8833, 10.1021/es506149d
Patil, , A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33, 736, 10.1016/j.biotechadv.2015.03.002
Puig, 2017, Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity, Bioresour. Technol., 228, 201, 10.1016/j.biortech.2016.12.035
Rabaey, 2010, Microbial electrosynthesis – revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422
Raes, 2017, Continuous long-term bioelectrochemical chain elongation to butyrate, ChemElectroChem, 4, 386, 10.1002/celc.201600587
Richter, 2013, A two-stage continuous fermentation system for conversion of syngas into ethanol, Energies, 6, 3987, 10.3390/en6083987
Risgaard-Petersen, 2015, Cable bacteria in freshwater sediments, Appl. Environ. Microbiol., 81, 6003, 10.1128/AEM.01064-15
Roghair, 2016, Granular sludge formation and characterization in a chain elongation process, Process Biochem., 51, 1594, 10.1016/j.procbio.2016.06.012
Schauer, 2014, Succession of cable bacteria and electric currents in marine sediment, ISME J., 8, 1314, 10.1038/ismej.2013.239
Sharma, 2013, Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone, Chem. Commun., 49, 6495, 10.1039/c3cc42570c
Sharon, 2016, A Circular Economy in the Netherlands by 2050
Sleutels, 2009, Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport, Int. J. Hydrogen Energy, 34, 9655, 10.1016/j.ijhydene.2009.09.089
Spirito, 2014, Chain elongation in anaerobic reactor microbiomes to recover resources from waste, Curr. Opin. Biotechnol., 27, 115, 10.1016/j.copbio.2014.01.003
Steinbusch, 2011, Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass, Energy Environ. Sci., 4, 216, 10.1039/C0EE00282H
Van Eerten-Jansen, 2013, Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures, ACS Sustainable Chem. Eng., 1, 513, 10.1021/sc300168z
Zhang, 2013, Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor, Water Res., 47, 6122, 10.1016/j.watres.2013.07.033
Zhou, 2015, Transcriptomic and physiological insights into the robustness of long filamentous cells of Methanosaeta harundinacea, prevalent in upflow anaerobic sludge blanket granules, Appl. Environ. Microbiol., 81, 831, 10.1128/AEM.03092-14