Critical Biofilm Growth throughout Unmodified Carbon Felts Allows Continuous Bioelectrochemical Chain Elongation from CO2 up to Caproate at High Current Density

Ludovic Jourdin1,2, Sanne M. T. Raes2, Cees J.N. Buisman2, David P. B. T. B. Strik2
1Advanced Water Management Centre, University of Queensland, Brisbane, QLD, Australia
2Sub-Department of Environmental Technology, Wageningen University and Research, Wageningen, Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agler, 2011, Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform, Trends Biotechnol., 29, 70, 10.1016/j.tibtech.2010.11.006

Angenent, 2016, Chain elongation with reactor microbiomes: open-culture biotechnology to produce biochemicals, Environ. Sci. Technol., 50, 2796, 10.1021/acs.est.5b04847

Angenent, 2002, Microbial community structure and activity in a compartmentalized, anaerobic bioreactor, Water Environ. Res., 74, 450, 10.2175/106143002X140242

Arends, 2017, Continuous long-term electricity-driven bioproduction of carboxylates and isopropanol from CO2 with a mixed microbial community, J. CO2 Util., 20, 141, 10.1016/j.jcou.2017.04.014

Aryal, 2016, Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis, Electrochim. Acta, 217, 117, 10.1016/j.electacta.2016.09.063

Bajracharya, , Bioelectrochemical conversion of CO2 to chemicals: CO2 as next generation feedstock for the electricity-driven bioproduction in batch and continuous mode, Faraday Discuss., 433, 10.1039/C1037FD00050B

Bajracharya, , Long-term operation of microbial electrosynthesis cell reducing CO2 to multi-carbon chemicals with a mixed culture avoiding methanogenesis, Bioelectrochemistry, 113, 26, 10.1016/j.bioelechem.2016.09.001

Barker, 1947, Clostridium kluyveri , Antonie Van Leeuwenhoek, 12, 167, 10.1007/BF02272663

Batlle-Vilanova, 2017, Microbial electrosynthesis of butyrate from carbon dioxide: production and extraction, Bioelectrochemistry, 117, 57, 10.1016/j.bioelechem.2017.06.004

Blanchet, 2015, Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction, Energy Environ. Sci., 8, 3731, 10.1039/C5EE03088A

Blaut, 1994, Metabolism of methanogens, Antonie Van Leeuwenhoek, 66, 187, 10.1007/BF00871639

Chen, 2002, Acid–base enrichment enhances anaerobic hydrogen production process, Appl. Microbiol. Biotechnol., 58, 224, 10.1007/s002530100814

Chen, 2017, Production of caproic acid from mixed organic waste – an environmental life cycle perspective, Environ. Sci. Technol., 51, 7159, 10.1021/acs.est.6b06220

Chen, 2016, Methanol as an alternative electron donor in chain elongation for butyrate and caproate formation, Biomass Bioenergy, 93, 201, 10.1016/j.biombioe.2016.07.008

Cui, 2017, Three-dimensional hierarchical metal oxide-carbon electrode material for high efficient microbial electrosynthesis, Sustainable Energy Fuels, 1, 1171, 10.1039/C7SE00073A

Ganigue, 2015, Microbial electrosynthesis of butyrate from carbon dioxide, Chem. Commun., 51, 3235, 10.1039/C4CC10121A

González-Cabaleiro, 2013, Linking thermodynamics and kinetics to assess pathway reversibility in anaerobic bioprocesses, Energy Environ. Sci., 6, 3780, 10.1039/c3ee42754d

Graves, 2006, Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash, J. Ind. Microbiol. Biotechnol., 33, 469, 10.1007/s10295-006-0091-6

Grootscholten, , Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production, Bioresour. Technol., 135, 440, 10.1016/j.biortech.2012.10.165

Grootscholten, , Improving medium chain fatty acid productivity using chain elongation by reducing the hydraulic retention time in an upflow anaerobic filter, Bioresour. Technol., 136, 735, 10.1016/j.biortech.2013.02.114

Im, 2016, Biologically activated graphite fiber electrode for autotrophic acetate production from CO2 in a bioelectrochemical system, Carbon Lett., 20, 76, 10.5714/CL.2016.20.076

Jourdin, 2014, A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis, J. Mater. Chem. A, 2, 13093, 10.1039/C4TA03101F

Jourdin, , Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source, Bioelectrochemistry, 102, 56, 10.1016/j.bioelechem.2014.12.001

Jourdin, , High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide, Environ. Sci. Technol., 49, 13566, 10.1021/acs.est.5b03821

Jourdin, , Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved design and operating conditions, Environ. Sci. Technol., 50, 1982, 10.1021/acs.est.5b04431

Jourdin, , Biologically-induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide, ChemElectroChem, 3, 581, 10.1002/celc.201500530

Jourdin, 2017, “Electrodes for cathodic microbial electrosynthesis processes: key-developments and criteria for effective research & implementation,”, Functional Electrodes for Enzymatic and Microbial Bioelectrochemical Systems, 429, 10.1142/9781786343543_0012

Kleerebezem, 2015, Anaerobic digestion without biogas?, Rev. Environ. Sci. Biotechnol., 14, 787, 10.1007/s11157-015-9374-6

Koutinas, 2016, Techno-economic evaluation of a complete bioprocess for 2,3-butanediol production from renewable resources, Bioresour. Technol., 204, 55, 10.1016/j.biortech.2015.12.005

Kucek, , Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome, Water Res., 93, 163, 10.1016/j.watres.2016.02.018

Kucek, , High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation, Energy Environ. Sci., 9, 3482, 10.1039/C6EE01487A

LaBelle, 2017, Energy efficiency and productivity enhancement of microbial electrosynthesis of acetate, Front. Microbiol., 8, 756, 10.3389/fmicb.2017.00756

Larsen, 2015, Cable bacteria associated with long-distance electron transport in New England salt marsh sediment, Environ. Microbiol. Rep., 7, 175, 10.1111/1758-2229.12216

Li, 2015, Significant performance enhancement of a UASB reactor by using acyl homoserine lactones to facilitate the long filaments of Methanosaeta harundinacea 6Ac, Appl. Microbiol. Biotechnol., 99, 6471, 10.1007/s00253-015-6478-4

Liu, 2017, Significant enhancement by biochar of caproate production via chain elongation, Water Res., 119, 150, 10.1016/j.watres.2017.04.050

Lovley, 2011, Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination, Energy Environ. Sci., 4, 4896, 10.1039/c1ee02229f

Marshall, 2017, Metabolic Reconstruction and Modeling Microbial Electrosynthesis, BioRxiv 059410., 7, 10.1038/s41598-017-08877-z

Martin, 2013, A single-culture bioprocess of Methanothermobacter thermautotrophicus to upgrade digester biogas by CO2-to-CH4 conversion with H2, Archaea, 2013, 157529, 10.1155/2013/157529

Marzocchi, 2014, Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment, ISME J., 8, 1682, 10.1038/ismej.2014.19

Mekonnen, 2016, Four billion people facing severe water scarcity, Sci. Adv., 2, e1500323, 10.1126/sciadv.1500323

Parshina, 2014, Methanospirillum stamsii sp. nov., a psychrotolerant, hydrogenotrophic, methanogenic archaeon isolated from an anaerobic expanded granular sludge bed bioreactor operated at low temperature, Int. J. Syst. Evol. Microbiol., 64, 180, 10.1099/ijs.0.056218-0

Patil, , Selective enrichment establishes a stable performing community for microbial electrosynthesis of acetate from CO2, Environ. Sci. Technol., 49, 8833, 10.1021/es506149d

Patil, , A logical data representation framework for electricity-driven bioproduction processes, Biotechnol. Adv., 33, 736, 10.1016/j.biotechadv.2015.03.002

Puig, 2017, Tracking bio-hydrogen-mediated production of commodity chemicals from carbon dioxide and renewable electricity, Bioresour. Technol., 228, 201, 10.1016/j.biortech.2016.12.035

Rabaey, 2010, Microbial electrosynthesis – revisiting the electrical route for microbial production, Nat. Rev. Microbiol., 8, 706, 10.1038/nrmicro2422

Raes, 2017, Continuous long-term bioelectrochemical chain elongation to butyrate, ChemElectroChem, 4, 386, 10.1002/celc.201600587

Richter, 2013, A two-stage continuous fermentation system for conversion of syngas into ethanol, Energies, 6, 3987, 10.3390/en6083987

Risgaard-Petersen, 2015, Cable bacteria in freshwater sediments, Appl. Environ. Microbiol., 81, 6003, 10.1128/AEM.01064-15

Roghair, 2016, Granular sludge formation and characterization in a chain elongation process, Process Biochem., 51, 1594, 10.1016/j.procbio.2016.06.012

Schauer, 2014, Succession of cable bacteria and electric currents in marine sediment, ISME J., 8, 1314, 10.1038/ismej.2013.239

Sharma, 2013, Bioelectrocatalyzed reduction of acetic and butyric acids via direct electron transfer using a mixed culture of sulfate-reducers drives electrosynthesis of alcohols and acetone, Chem. Commun., 49, 6495, 10.1039/c3cc42570c

Sharon, 2016, A Circular Economy in the Netherlands by 2050

Sleutels, 2009, Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport, Int. J. Hydrogen Energy, 34, 9655, 10.1016/j.ijhydene.2009.09.089

Spirito, 2014, Chain elongation in anaerobic reactor microbiomes to recover resources from waste, Curr. Opin. Biotechnol., 27, 115, 10.1016/j.copbio.2014.01.003

Steinbusch, 2011, Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass, Energy Environ. Sci., 4, 216, 10.1039/C0EE00282H

Van Eerten-Jansen, 2013, Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures, ACS Sustainable Chem. Eng., 1, 513, 10.1021/sc300168z

Zhang, 2013, Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor, Water Res., 47, 6122, 10.1016/j.watres.2013.07.033

Zhou, 2015, Transcriptomic and physiological insights into the robustness of long filamentous cells of Methanosaeta harundinacea, prevalent in upflow anaerobic sludge blanket granules, Appl. Environ. Microbiol., 81, 831, 10.1128/AEM.03092-14

Zhu, 2017, Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6, Biotechnol. Biofuels, 10, 102, 10.1186/s13068-017-0788-y