Criterion of Significance Level for Selection of Order of Spectral Estimation of Entropy Maximum

В. В. Савченко1, Andrey V. Savchenko2
1Nizhny Novgorod State Linguistic University, Nizhny Novgorod, Russia
2National Research University Higher School of Economics, Nizhny Novgorod, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

S. M. Kay, Modern Spectral Estimation: Theory and Application (Prentice-Hall signal processing series, 1999).

L. R. Rabiner, R. W. Schafer, Theory and Applications of Digital Speech Processing (Pearson, Boston, 2010).

J. Gibson, “Entropy power, autoregressive models, and mutual information,” Entropy 20, No. 10, 750 (2018). DOI: 10.3390/e20100750.

S. L. Marple Jr., Digital Spectral Analysis with Applications (Prentice-Hall, 1987).

F. Castanié (ed.), Digital Spectral Analysis: Parametric, Non-Parametric and Advanced Methods (Wiley-ISTE, 2011). URI: https://www.wiley.com/en-us/Digital+Spectral+Analysis%3A+Parametric%2C+Non+Parametric+and+Advanced+Methods-p-9781848212770 .

V. V. Savchenko, “The new concept of the software of statistical information processing on the basis of predictive function of probability theory,” Nauchnyye Vedomosti BelGU. Ser: Ekonomika. Informatiks 34/1, No. 7, 84 (2015). URI: http://dspace.bsu.edu.ru/handle/123456789/13130 .

C.-A. Liu, B.-S. Kuo, W.-J. Tsay, “Autoregressive spectral averaging estimator,” IEAS Working Paper: academic research 17-A013. Institute of Economics (Taiwan, 2017). URI: https://ideas.repec.org/p/sin/wpaper/17-a013.html .

E. O. Zaitsev, V. E. Sydorchuk, A. N. Shpilka, “Application of the spectrum analysis with using Berg method to developed special software tools for optical vibration diagnostics systems,” Devices Methods Meas. 7, No. 2, 186 (2016). DOI: 10.21122/2220-9506-2016-7-2-186-194.

V. A. Kakora, A. V. Grinkevich, “Mathematical analysis of spectral estimation algorithms resolution,” Doklady BGUIR, No. 3, 20 (2017). URI: https://elibrary.ru/item.asp?id=29855484 .

MATLAB Examples. URI: https://www.mathworks.com/examples/signal/category/spectral-analysis .

J. Ding, V. Tarokh, Y. Yang, “Bridging AIC and BIC: a new criterion for autoregression,” IEEE Trans. Inf. Theory 64, No. 6, 4024 (2018). DOI: 10.1109/TIT.2017.2717599.

J. Ding, M. Noshad, V. Tarokh, “Order selection of autoregressive processes using bridge criterion,” Proc. of IEEE Int. Conf. on Data Mining Workshop, ICDMW, 14–17 Nov. 2015, Atlantic City, NJ, USA (IEEE, 2015). DOI: 10.1109/ICDMW.2015.216.

Y. I. Abramovich, N. K. Spencer, M. D. E. Turley, “Order estimation and discrimination between stationary and time-varying (TVAR) autoregressive models,” IEEE Trans. Signal Process. 55, No. 6, 2861 (2007). DOI: 10.1109/TSP.2007.893966.

P. Stoica, Y. Selen, “Model-order selection: a review of information criterion rules,” IEEE Signal Processing Mag. 21, No. 4, 36 (2004). DOI: 10.1109/MSP.2004.1311138.

V. V. Savchenko, “The principle of the information-divergence minimum in the problem of spectral analysis of the random time series under the condition of small observation samples,” Radiophys. Quantum Electronics 58, No. 5, 373 (2015). DOI: 10.1007/s11141-015-9611-4.

S. S. Rachel, U. Snekhalatha, K. Vedhasorubini, D. Balakrishnan, “Spectral analysis of speech signal characteristics: a comparison between healthy controls and Laryngeal disorder,” in: Dash S., Das S., Panigrahi B. (eds). Int. Conf. on Intelligent Computing and Applications. Advances in Intelligent Systems and Computing (Springer, Singapore, 2018), Vol. 632. DOI: 10.1007/978-981-10-5520-1_31.

A. V. Savchenko, “Sequential three-way decisions in efficient classification of piecewise stationary speech signals,” Lecture Notes in Artificial Intelligence 10314, 264 (2017). DOI: 10.1007/978-3-319-60840-2_19.

A. Esposito, M. Faundez-Zanuy, A. M. Esposito, G. Cordasco, Th. Drugman, J. Solé-Casals, F. C. Morabito, (eds.), Recent Advances in Nonlinear Speech Processing (Springer, 2016). DOI: 10.1007/978-3-319-28109-4.

M. H. Farouk, “Spectral analysis of speech signal and pitch estimation,” in: Application of Wavelets in Speech Processing (Springer, Cham, 2018). DOI: 10.1007/978- 3-319-69002-5_4.

V. V. Savchenko, “Criterion for minimum of mean information deviation for distinguishing random signals with similar characteristics,” Radioelectron. Commun. Syst. 61, No. 9, 419 (2018). DOI: 10.3103/S0735272718090042.

S. Kullback, Information Theory and Statistics (Dover Pub., N.Y., 1997).