Criteria of solvability for multidimensional Riccati equations

Arkiv för Matematik - Tập 37 Số 1 - Trang 87-120 - 1999
Kurt Hansson1, Vladimir Maz’ya1, Igor E. Verbitsky2
1Department of Mathematics, Linkoping University, Linkoping, Sweden
2Department of Mathematics, University of Missouri, Columbia, U.S.A.

Tóm tắt

Từ khóa


Tài liệu tham khảo

[AH]Adams, D. R. andHedberg, L. I.,Function Spaces and Potential Theory, Springer-Verlag, Berlin-Heidelberg, 1996.

[AP]Adams, D. R. andPierre, M., Capacitary strong type estimates in semilinear problems,Ann. Inst. Fourier (Grenoble) 41:1 (1991), 117–135.

[Ag]Agmon, S., On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, inMethods of Functional Analysis and Theory of Elliptic Equations (Greco, D., ed.), pp. 19–52, Liguori, Naples, 1983.

[A1]Ancona, A., On strong barriers and an inequality of Hardy for domains inR n,J. London Math. Soc. 34 (1986), 274–290.

[A2]Ancona, A., First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains,J. Anal. Math. 72 (1997), 45–92.

[B]Baras, P., Semilinear problem with convex nonlinearity, inRecent Advances in Nonlinear Elliptic and Parabolic Problems (Bénilan, P., Chipot, M., Evans, L. C. and Pierre, M., eds.), Pitman Research Notes in Math. Sciences208, pp. 202–215, Longman, Harlow, 1989.

[BP]Baras, P. andPierre, M., Singularités éliminables pour des équations semilinéaires,Ann. Inst. Fourier (Grenoble) 34:1 (1984), 185–206.

[CZ]Chung, K. L. andZhao, Z.,From Brownian Motion to Schrödinger's Equation, Springer-Verlag, Berlin, 1995.

[GW]Grüter, M. andWidman, K.-O., The Green function for uniformly elliptic equations,Manuscripta Math. 37 (1982), 303–342.

[H]Hansson, K., Imbedding theorems of Sobolev type in potential theory,Math. Scand.45 (1979), 77–102.

[Ha]Hartman, P.,Ordinary Differential Equations, Republ. 2nd ed., Birkhäuser, Boston, Mass., 1982.

[HK]Hayman, W. K. andKennedy, P. B.,Subharmonic Functions, Vol. I, Academic Press, London-New York-San Francisco, 1976.

[He]Hedberg, L. I., On certain convolution inequalities,Proc. Amer. Math. Soc. 36 (1972), 505–510.

[HS]Hueber, H. andSieveking, M., Uniform bounds for quotients of Green functions onC 1,1-domains,Ann. Inst. Fourier (Grenoble) 32:1 (1982), 105–117.

[KV]Kalton, N. J. andVerbitsky, I. E., Nonlinear equations and weighted norm inequalities, to appear inTrans. Amer, Math. Soc.

[L]Lions, P. L., On the existence of positive solutions of semilinear elliptic equations,SIAM Rev. 24 (1982), 441–467.

[M1]Maz'ya, V. G., On the theory of then-dimensional Schrödinger operator,Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1145–1172 (Russian).

[M2]Maz'ya, V. G.,Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.

[MV]Maz'ya, V. G. andVerbitsky, I. E., Capacitary estimates for fractional integrals, with applications to partial differential equations and Sobolev multipliers,Ark. Mat. 33 (1995), 81–115.

[N]Nyström, K., Integrability of Green potentials in fractal domains,Ark. Mat. 34 (1996), 335–381.

[S]Schechter, M., Hamiltonians for singular potentials,Indiana Univ. Math. J. 22 (1972), 483–503.

[Si]Simon, B., Schrödinger semigroups,Bull. Amer. Math. Soc. 7 (1982), 447–526.

[St]Stein, E. M.,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.

[VW]Verbitsky, I. E. andWheeden, R. L., Weighted inequalities for fractional integrals and applications to semilinear equations,J. Funct. Anal. 129 (1995), 221–241.

[W]Widman, K.-O., Inequalities for the Green function and boundary continuity of the gradients of solutions of elliptic differential equations,Math. Scand. 21 (1967), 13–67.

[Z]Zhao, Z., Green function for Schrödinger operator and conditioned Feynman-Kac gauge,J. Math. Anal. Appl. 116 (1986), 309–334.