Criteria of solvability for multidimensional Riccati equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
[AH]Adams, D. R. andHedberg, L. I.,Function Spaces and Potential Theory, Springer-Verlag, Berlin-Heidelberg, 1996.
[AP]Adams, D. R. andPierre, M., Capacitary strong type estimates in semilinear problems,Ann. Inst. Fourier (Grenoble) 41:1 (1991), 117–135.
[Ag]Agmon, S., On positivity and decay of solutions of second order elliptic equations on Riemannian manifolds, inMethods of Functional Analysis and Theory of Elliptic Equations (Greco, D., ed.), pp. 19–52, Liguori, Naples, 1983.
[A1]Ancona, A., On strong barriers and an inequality of Hardy for domains inR n,J. London Math. Soc. 34 (1986), 274–290.
[A2]Ancona, A., First eigenvalues and comparison of Green's functions for elliptic operators on manifolds or domains,J. Anal. Math. 72 (1997), 45–92.
[B]Baras, P., Semilinear problem with convex nonlinearity, inRecent Advances in Nonlinear Elliptic and Parabolic Problems (Bénilan, P., Chipot, M., Evans, L. C. and Pierre, M., eds.), Pitman Research Notes in Math. Sciences208, pp. 202–215, Longman, Harlow, 1989.
[BP]Baras, P. andPierre, M., Singularités éliminables pour des équations semilinéaires,Ann. Inst. Fourier (Grenoble) 34:1 (1984), 185–206.
[CZ]Chung, K. L. andZhao, Z.,From Brownian Motion to Schrödinger's Equation, Springer-Verlag, Berlin, 1995.
[GW]Grüter, M. andWidman, K.-O., The Green function for uniformly elliptic equations,Manuscripta Math. 37 (1982), 303–342.
[H]Hansson, K., Imbedding theorems of Sobolev type in potential theory,Math. Scand.45 (1979), 77–102.
[Ha]Hartman, P.,Ordinary Differential Equations, Republ. 2nd ed., Birkhäuser, Boston, Mass., 1982.
[HK]Hayman, W. K. andKennedy, P. B.,Subharmonic Functions, Vol. I, Academic Press, London-New York-San Francisco, 1976.
[HS]Hueber, H. andSieveking, M., Uniform bounds for quotients of Green functions onC 1,1-domains,Ann. Inst. Fourier (Grenoble) 32:1 (1982), 105–117.
[KV]Kalton, N. J. andVerbitsky, I. E., Nonlinear equations and weighted norm inequalities, to appear inTrans. Amer, Math. Soc.
[L]Lions, P. L., On the existence of positive solutions of semilinear elliptic equations,SIAM Rev. 24 (1982), 441–467.
[M1]Maz'ya, V. G., On the theory of then-dimensional Schrödinger operator,Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 1145–1172 (Russian).
[M2]Maz'ya, V. G.,Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1985.
[MV]Maz'ya, V. G. andVerbitsky, I. E., Capacitary estimates for fractional integrals, with applications to partial differential equations and Sobolev multipliers,Ark. Mat. 33 (1995), 81–115.
[St]Stein, E. M.,Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N. J., 1970.
[VW]Verbitsky, I. E. andWheeden, R. L., Weighted inequalities for fractional integrals and applications to semilinear equations,J. Funct. Anal. 129 (1995), 221–241.
[W]Widman, K.-O., Inequalities for the Green function and boundary continuity of the gradients of solutions of elliptic differential equations,Math. Scand. 21 (1967), 13–67.