Criteria for SLOCC and LU Equivalence of Generic Multi-qudit States

Springer Science and Business Media LLC - Tập 62 - Trang 1-14 - 2022
Jingmei Chang1, Naihuan Jing2, Tinggui Zhang3
1Department of Mathematics, Shanghai University, Shanghai, China
2Department of Mathematics, North Carolina State University, Raleigh, USA
3School of Mathematics and Statistics, Hainan Normal University, Haikou, China

Tóm tắt

In this paper, we study the stochastic local operation and classical communication (SLOCC) and local unitary (LU) equivalence for multi-qudit states by mode-n matricization of the coefficient tensors. We establish a new scheme of using the CANDECOMP/PARAFAC (CP) decomposition of tensors to find necessary and sufficient conditions between the mode-n unfolding and SLOCC&LU equivalence for pure multi-qudit states. For multipartite mixed states, we present a necessary and sufficient condition for LU equivalence and necessary condition for SLOCC equivalence.

Tài liệu tham khảo

Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009) Bennett, C. H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993) Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998) Albeverio, S., Fei, S.M.: Teleportation of general finite-dimensional quantum systems. Phys. Lett. A 276, 8–11 (2000) Albeverio, S., Fei, S.M., Yang, W.L.: Optimal teleportation based on Bell measurements. Phys. Rev. A 66, 012301 (2002) Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996) Griffiths, R.B., Niu, C.-S.: Optimal eavesdropping in quantum cryptography. II. A quantum circuit. Phys. Rev. A 56, 1173–1176 (1997) Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London Ser. A 439, 553–558 (1992) Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys Rev. Lett. 79, 325 (1997) Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733 (1996) Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992) Bennett, C.H., Popescu, S., Rohrlich, D., Smolin, J.A., Thapliyal, A.V.: Exact and asymptotic measures of multipartite pure-state entanglement. Phys Rev. A 63, 012307 (2001) Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000) Verstraete, F., Dehaene, J., De Moor, B., Verschelde, H.: Four qubits can be entangled in nine different ways. Phys Rev. A 65, 052112 (2002) Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys Rev. Lett. 87, 040401 (2001) Li, X.R., Li, D.F.: Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states. Phys Rev. A 86, 042332 (2012) Wang, S.H., Lu, Y., Long, G.L.: Entanglement classification of 2 × 2 × 2 × d quantum systems via the ranks of the multiple coefficient matrices. Phys Rev. A 87, 062305 (2013) Wang, S.H., Lu, Y., Gao, M., Cui, J.L., Li, J.L.: Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix. J. Phys A Math. Theor. 46, 105303 (2013) Holweck, F., Luque, J.G., Thibon, J.Y.: Entanglement of four-qubit systems: a geometric atlas with polynomial compass II (the tame world). J. Math. Phys. 58, 022201 (2017) Turner, J.: A new degree bound for local unitary and n-qubit SLOCC invariants, arXiv:1706.00634 (2017) Macia̧żek, T., Sawicki, A.: Asymptotic properties of entanglement polytopes for large number of qubits, vol. 51 (2018) Zangi, S. M., Li, J. L., Qiao, C.F.: Entanglement classification of four-partite states under the SLOCC. J. Phys. A Math. Theor. 50, 325301 (2017) Shi, X.: The stabilizer for n-qubit symmetric states. Chin Phys. B 27, 100311 (2018) Huang, Y., Yu, H.P., Miao, F., Han, T.Y., Zhang, X.J.: Mathematical framework for describing multipartite entanglement in terms of rows or columns of coefficient matrices. Int. J. Quant. Inf. 20, 2150035 (2022) Fei, S.M., Jing, N.: Equivalence of quantum states under local unitary transformations. Phys. Lett. A 342, 77–81 (2005) Kraus, B.: Local unitary equivalence of multipartite pure states. Phys Rev. Lett. 104, 020504 (2010) Liu, B., Li, J.L., Li, X.K., Qiao, C.F.: Local unitary classification of arbitrary dimensional multipartite pure states. Phys Rev. Lett. 108, 050501 (2012) Verstraete, F., Dehaene, J., De Moor, B.: Normal forms and entanglement measures for multipartite quantum states. Phys Rev. A 68, 012103 (2003) Zhang, T.G., Zhao, M.J., Li, M., Fei, S.M., Li-Jost, X.: Criterion of local unitary equivalence for multipartite states. Phys Rev. A 88, 042304 (2013) Li, M., Zhang, T.G., Fei, S.M., Li-Jost, X., Jing, N.: Local unitary equivalence of multi-qubit mixed quantum states. Phys. Rev. A 89, 062325 (2014) Makhlin, Y.: Nonlocal properties of two-qubit gates and mixed states, and the optimization of quantum computations. Quant Inf. Process. 1, 243–252 (2002) Turner, J., Morton, J.: A complete set of invariants for LU-equivalence of density operators. SIGMA, pp. 13 (2017) Jing, N., Li, M., Li-Jost, X., Zhang, T.G., Fei, S.M.: SLOCC invariants for multipartite mixed states. J. Phys. A Math. Theor. 47, 215303 (2014) Jing, N., Fei, S.M., Li, M., Li-Jost, X., Zhang, T.G.: Local unitary invariants of generic multiqubit states. Phys Rev. A 92, 022306 (2015) Sun, B.Z., Fei, S.M., Wang, Z.X.: On local unitary equivalence of two and three-qubit states. Sci Rep. 7, 4869 (2017) Kruskal, J.B.: Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Alg. Appl. 18, 95–138 (1977) Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927) Qi, L.Q., Luo, Z.Y.: Tensor analysis: spectral theory and special tensors. Philadelphia: Society for Industrial and Applied Mathematics (2017) Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009) Smilde, A., Bro, R., Geladi, P.: Multi-Way Analysis: Applications in the Chemical Sciences. Wiley, England (2004) Horn, R. A., Johnson, C.R.: Topics in matrix analysis. Cambridge England: Cambridge university (1991) Chang, J.M., Jing, N.: Local unitary equivalence of generic multi-qubits based on the CP decomposition. Int. J. Theor. Phys. 61, 137 (2022) Chen, K., Wu, L.A.: A matrix realignment method for recognizing entanglement. Quant. Inf Comp. 3, 193–202 (2003) Sun, L.L., Li, J.L., Qiao, C.F.: Classification of the entangled states of 2 × L × M × N. Quant. Inf Process. 14, 229–245 (2015) Zhang, T.G., Zhao, M.J., Huang, X.F.: Criterion for SLOCC equivalence of multipartite quantum states. J. Phys. A Math. Theor. 49, 405301 (2016) Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123, 85–100 (2000)