Cretaceous-Cenozoic growth of the Patagonian broken foreland basin, Argentina: Chronostratigraphic framework and provenance variations during transitions in Andean subduction dynamics
Tài liệu tham khảo
Adriasola, 2005, Postmagmatic cooling and late cenozoic denudation of the north Patagonian batholith in the Los lagos region of Chile, 41°- 42°15S, Int. J. Earth Sci., 95, 504, 10.1007/s00531-005-0027-9
Alric, 1996, 135
Aragón, 2011, The North Patagonian batholith at Paso Puyehue (Argentina-Chile). SHRIMP ages and compositional features, J. South Am. Earth Sci., 32, 547, 10.1016/j.jsames.2011.02.005
Aragón, 2011, Tectono-magmatic response to major convergence changes in the North Patagonian suprasubduction system; the Paleogene subduction–transcurrent plate margin transition, Tectonophysics, 509, 218, 10.1016/j.tecto.2011.06.012
Aragón, 2013, The Farallon-Aluk ridge collision with South America: implications for the geochemical changes of slab window magmas from fore-to back-arc, Geosci. Front., 4, 377, 10.1016/j.gsf.2012.12.004
Ardolino, 1998, Estratigrafia del cuaternario del litoral patagonico entre Cabo Aristizabal y Bahía Camarones, Provincia del Chubut, Argentina, vol. 1, 107
Balgord, 2017, Triassic to Neogene evolution of the south-central Andean arc determined by detrital zircon U-Pb and Hf analysis of Neuquén Basin strata, central Argentina (34°S–40°S), Lithosphere, 9, 453, 10.1130/L546.1
Balgord, 2016, basin evolution of upper cretaceous–lower cenozoic strata in the Malargüe fold-and-thrust belt: northern Neuquén basin, Argentina, Basin Res., 28, 183, 10.1111/bre.12106
Bechis, 2014, New age constraints for the Cenozoic marine transgressions of northwestern Patagonia, Argentina (41°-43°S): Paleogeographic and tectonic implications, J. South Am. Earth Sci., 52, 72, 10.1016/j.jsames.2014.02.003
Biddle, 1986, The stratigraphic and structural evolution of central and eastern Magallanes Basin, Southern America, vol. 8, 41
Bilmes, 2013, Miocene block uplift and basin formation in the Patagonian foreland: the Gastre Basin, Argentina, Tectonophysics, 601, 98, 10.1016/j.tecto.2013.05.001
Bilmes, 2014, Relleno intermontano en el antepaís fragmentado patagónico: Evolución neógena de la cuenca de gastre, Rev. la Asoc. Geol. Argentina, 71, 311
Bouvier, 2008, The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets, Earth Planet. Sci. Lett., 273, 48, 10.1016/j.epsl.2008.06.010
Bucher, 2018, vol. 75, 312
Cande, 1986, Late cenozoic tectonics of the southern Chile trench, J. Geophys. Res., 91, 471, 10.1029/JB091iB01p00471
Castro, 2011, Petrology and SHRIMP U-Pb zircon geochronology of Cordilleran granitoids of the Bariloche area, Argentina, J. South Am. Earth Sci., 32, 508, 10.1016/j.jsames.2011.03.011
Cecil, 2011, U-Pb-Hf characterization of the central Coast Mountains batholith: implications for petrogenesis and crustal architecture, Lithosphere, 3, 247, 10.1130/L134.1
Cohen, 2018
Cúneo, 2013, High-precision U–Pb geochronology and a new chronostratigraphy for the Cañadón Asfalto Basin, Chubut, central Patagonia: implications for terrestrial faunal and floral evolution in Jurassic, Gondwana Res., 24, 1267, 10.1016/j.gr.2013.01.010
Daniels, 2017, Timing of deep-water slope-evolution constrained by large-n detrital and volcanic ash zircon geochronology, Cretaceous Magallanes Basin, Chile, Geol. Soc. Am. Bull., 130, 438, 10.1130/B31757.1
de Ignacio, 2001, The northern Patagonia Somuncura plateau basalts: a product of slab-induced, shallow asthenospheric upwelling?, Terra. Nova, 13, 117, 10.1046/j.1365-3121.2001.00326.x
Dickinson, 2009, Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database, Earth Planet. Sci. Lett., 288, 115, 10.1016/j.epsl.2009.09.013
Echaurren, 2016, Tectonic evolution of the North Patagonian Andes (41°–44° S) through recognition of syntectonic strata, Tectonophysics, 677–678, 99, 10.1016/j.tecto.2016.04.009
Echaurren, 2017, Early Andean tectonomagmatic stages in north Patagonia: insights from field and geochemical data, J. Geol. Soc. Lond., 174, 405, 10.1144/jgs2016-087
Encinas, 2014, Geochronologic and paleontologic evidence for a Pacific-Atlantic connection during the late Oligocene-early Miocene in the Patagonian Andes (43-44°S), J. South Am. Earth Sci., 55, 1, 10.1016/j.jsames.2014.06.008
Fernández Paz, 2018, Late Eocene volcanism in north Patagonia (42°30′–43°S): arc resumption after a stage of within-plate magmatism, J. Geodyn., 113, 13, 10.1016/j.jog.2017.11.005
Figari, 2005
Figari, 2015, Estratigrafía y evolución geológica de la Cuenca de Cañadón Asfalto , Provincia del Chubut , Argentina, Lat. Am. J. Sedimentol. Basin Anal., 22
Folguera, 2018, Neogene growth of the Patagonian Andes, 485, 10.1007/978-3-319-67774-3_19
Folguera, 2018, Constraints on the Neogene growth of the central Patagonian Andes at the latitude of the Chile triple junction (45°-47°S) using U/Pb geochronology in synorogenic strata, Tectonophysics, 744, 134, 10.1016/j.tecto.2018.06.011
Folguera, 2004, The lagos La Plata and Fontana fold-and-thrust belt: long-lived orogenesis at the edge of western Patagonia, J. South Am. Earth Sci., 16, 541, 10.1016/j.jsames.2003.10.001
Folguera, 2011, Repeated eastward shifts of arc magmatism in the Southern Andes: a revision to the long-term pattern of Andean uplift and magmatism, J. South Am. Earth Sci., 32, 531, 10.1016/j.jsames.2011.04.003
Fosdick, 2011, Kinematic evolution of the Patagonian retroarc fold-and-thrust belt and Magallanes foreland basin, Chile and Argentina, 51°30’S, Geol. Soc. Am. Bull., 123, 1679, 10.1130/B30242.1
Franchi, 1980, Los basaltos cretácicos y la evolución magmática del Chubut Occidental, Rev. Asoc. Geol. Argent., 35, 208
Franzese, 2018, Evolution of a Patagonian Miocene intermontane basin and its relationship with the Anean foreland: Tectono-stratigraphic evidences from the catán Lil basin, Argentina, J. South Am. Earth Sci., 86, 162, 10.1016/j.jsames.2018.06.008
Franzese, 2003, Tectonic and paleoenvironmental evolution of Mesozoic sedimentary basins along the Andean foothills of Argentina (32–54 S), J. South Am. Earth Sci., 16, 81, 10.1016/S0895-9811(03)00020-8
García Morabito, 2012, Andean evolution of the Aluminé fold and thrust belt, northern Patagonian Andes (38°30’-40°30’S), J. South Am. Earth Sci., 38, 13, 10.1016/j.jsames.2012.03.005
Gehrels, 2006, Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona LaserChron center, vol. 11, 1
Gehrels, 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation–multicollector–inductively coupled plasma– mass spectrometry, Geochem. Geophys. Geosyst., 9, 10.1029/2007GC001805
Gehrels, 2014, Detrital zircon U-Pb geochronology and Hf isotope geochemistry of Paleozoic and Triassic passive margin strata of western North America, Geosphere, 10, 49, 10.1130/GES00889.1
Ghiglione, 2010, Structure and tectonic history of the foreland basins of southernmost South America, J. South Am. Earth Sci., 29, 262, 10.1016/j.jsames.2009.07.006
Giacosa, 2004, Structure of the North Patagonian thick-skinned fold-and-thrust belt, southern central Andes, Argentina (41°–42°S), J. South Am. Earth Sci., 18, 61, 10.1016/j.jsames.2004.08.006
Giacosa, 2005, Tertiary tectonics of the sub-Andean region of the North Patagonian Andes, southern central Andes of Argentina (41–42°S30’S), J. South Am. Earth Sci., 20, 157, 10.1016/j.jsames.2005.05.013
Gianni, 2015, Patagonian broken foreland and related synorogenic rifting: the origin of the Chubut Group Basin, Tectonophysics, 649, 81, 10.1016/j.tecto.2015.03.006
Gianni, 2018, A geodynamic model linking Cretaceous orogeny, arc migration, foreland dynamic subsidence and marine ingression in southern South America, Earth Sci. Rev., 185, 437, 10.1016/j.earscirev.2018.06.016
Gonzánlez Díaz, 1982, Chronological zonation of granitic plutonism in the Northern Patagonian Andes of Argentina: the migration of intrusive cycles, Earth Sci. Rev., 18, 365, 10.1016/0012-8252(82)90045-9
Hauser, 2017, U-Pb and Lu-Hf zircon geochronology of the Cañadón Asfalto Basin, Chubut, Argentina: implications for the magmatic evolution in central Patagonia, J. South Am. Earth Sci., 78, 190, 10.1016/j.jsames.2017.05.001
Hervé, 1994, The southern Andes between 39° and 44° S latitude: the geological signature of a transpressive tectonic regime related to a magmatic arc, 243
Hervé, 2016, Devonian magmatism in the accretionary complex of southern Chile, J. Geol. Soc. Lond., 173, 587, 10.1144/jgs2015-163
Hervé, 2013, Provenance variations in the Late Paleozoic accretionary complex of central Chile as indicated by detrital zircons, Gondwana Res., 23, 112, 10.1016/j.gr.2012.06.016
Hervé, 2018, The country rocks of Devonian magmatism in the north Patagonian massif and Chaitenia, Andean Geol., 45, 301, 10.5027/andgeoV45n3-3117
Horton, 2016, Sedimentary record of plate coupling and decoupling during growth of the Andes, Geology, 44, 647, 10.1130/G37918.1
Horton, 2016, Andean stratigraphic record of the transition from backarc extension to orogenic shortening: a case study from the northern Neuquén Basin, Argentina, J. South Am. Earth Sci., 71, 17, 10.1016/j.jsames.2016.06.003
Horton, 2015, Punctuated shortening and subsidence in the Altiplano plateau of southern Peru: implications for early Andean mountain building: Lithosphere, 7, 117
Horton, 2018, Sedimentary record of Andean mountain building, Earth Sci. Rev., 178, 279, 10.1016/j.earscirev.2017.11.025
Horton, 2018, Tectonic regimes of the central and southern Andes: responses to variations in plate coupling during subduction, Tectonics, 37, 402, 10.1002/2017TC004624
Howell, 2005, The Neuquén basin: an overview, Geol. Soc. Lond. Spec. Publ., 252, 1, 10.1144/GSL.SP.2005.252.01.01
Iannelli, 2018, Geochemical and tectonic evolution of late cretaceous to early Paleocene magmatism along the southern central Andes (35-36 S), J. South Am. Earth Sci., 87, 139, 10.1016/j.jsames.2017.12.008
Iannelli, 2017, Evolution of Eocene to Oligocene arc-related volcanism in the north Patagonian Andes (39-41°S), prior to the break up of the Farallon plate, Tectonophysics, 696–697, 70, 10.1016/j.tecto.2016.12.024
Jordan, 2001, Extension and basin formation in the southern Andes caused by increased convergence rate: a mid-Cenozoic trigger for the Andes, Tectonics, 20, 234, 10.1029/1999TC001181
Kay, 2007, The Somuncura large igneous province in Patagonia: interaction of a transient mantle thermal anomaly with a subducting slab, J. Petrol., 48, 43, 10.1093/petrology/egl053
Lizuaín, 2010, vol. 369, 1
Ludwig, 2008, vol. 4, 1
López, 2019, Structural evolution of the Collón Cura basin: tectonic implications for the North Patagonian broken foreland, J. South Am. Earth Sci., 93, 424, 10.1016/j.jsames.2019.04.021
Marveggio, 2013, Nueva edad de la base del Grupo Chubut en la mena uranífera Cerro Solo, provincia del Chubut, Rev. Asoc. Geol. Argent., 70, 318
Mazzoni, 1991, Edades radimetricas eocenas, Borde Occidental del Macizo Norpatagonico, Rev. Asoc. Geol. Argent., 46, 150
Muñoz, 1998, Geofísica regional, 6
Muñoz, 2000, The relation of the mid-Tertiary coastal magmatic belt in south-central Chile to the late Oligocene increase in convergence rate, Rev. Asoc. Geol. Argent., 27, 1
Navarro, 2015, Detrital zircon geochronology and provenance of the Chubut Group in the northeast of Patagonia, Argentina, J. South Am. Earth Sci., 63, 149, 10.1016/j.jsames.2015.07.006
Navarrete, 2016, Episodic Jurassic to lower cretaceous intraplate compression in central Patagonia during Gondwana breakup, J. Geodyn., 102, 185, 10.1016/j.jog.2016.10.001
Orts, 2012, Tectonic development of the North Patagonian Andes and their related Miocene foreland basin (41°30′-43°S), Tectonics, 31, TC3012, 10.1029/2011TC003084
Orts, 2015, Cenozoic building and deformational processes in the north Patagonian Andes, J. Geodyn., 86, 26, 10.1016/j.jog.2015.02.002
Pankhurst, 1994, Sm-Nd evidence for the Grenvillian provenance of the metasedimentary basement of Southern Chile and West Antarctica, vol. 2, 1414
Pankhurst, 1995, Production of Jurassic rhyolite by anatexis of the lower crust of Patagonia, Earth Planet. Sci. Lett., 134, 23, 10.1016/0012-821X(95)00103-J
Pankhurst, 2006, Gondwanide continental collision and the origin of Patagonia, Earth Sci. Rev., 76, 235, 10.1016/j.earscirev.2006.02.001
Pankhurst, 2000, Episodic silicic volcanism in Patagonia and Antarctic peninsula: chronology of the magmatism associated with the break-up of Gondwana, J. Petrol., 41, 605, 10.1093/petrology/41.5.605
Pankhurst, 1999, Mesozoic-cenozoic evolution of the north Patagonian batholith in Aysén, southern Chile, J. Geol. Soc. Lond., 156, 673, 10.1144/gsjgs.156.4.0673
Pepper, 2016, Magmatic history and crustal genesis if western South America: constraints from U-Pb ages and Hf isotopes of detrital zircons in modern rivers, Geosphere, 12, 1532, 10.1130/GES01315.1
Ramos, 2005, Seismic ridge subduction and topography: foreland deformation in the Patagonian Andes, Tectonophysics, 399, 73, 10.1016/j.tecto.2004.12.016
Ramos, 2008, Patagonia: a paleozoic continent adrift?, J. South Am. Earth Sci., 26, 235, 10.1016/j.jsames.2008.06.002
Ramos, 2009, Anatomy and global context of the Andes: main geologic features and the orogenic cycle, vol. 204, 31
Ramos, 2011, 68, 210
Ramos, 2015, The North Patagonian orogenic front and related foreland evolution during the Miocene, analyzed from synorogenic sedimentation and U/Pb dating (∼42°S), J. South Am. Earth Sci., 64, 467, 10.1016/j.jsames.2015.08.006
Rapela, 1992, The granite of northern Patagonia and the gastre fault system in relation to the break-up of Gondwana, vol. 68, 209
Rapela, 1988, Temporal evolution and spatial variation of early Tertiary volcanism in the Patagonian Andes (40°S-42°30'S), J. South Am. Earth Sci., 1, 75, 10.1016/0895-9811(88)90017-X
Rapela, 1992, Triassic "Gondwana" granites of the Gastre district, North Patagonian Massif. Trans. Royal Soc. Edinb. Earth Sci., 84, 291
Rapela, 2005, Pacific subduction coeval with the Karoo mantle plume: the Early Jurassic Subcordilleran belt of northwestern Patagonia, vol. 246, 217
Rolando, 2002, SHRIMP zircon U-Pb evidence for extended Mesozoic magmatism in the Patagonian Batholith and assimilation of Archean crustal components, J. South Am. Earth Sci., 15, 267, 10.1016/S0895-9811(02)00015-9
Rolondo, 2004, McNaughton, SHRIMP U-Pb zircon dates from igneous rocks from the Fontana Lake region, Patagonia: Implications forthe age of magmatism, Mesozoic geological evolution and age of basement, Revista de la Asociación Geológica Argentina, 59, 671
Romans, 2011, Evolution of deep-water stratigraphic architecture, Magallanes Basin, Chile, Mar. Pet. Geol., 28, 612, 10.1016/j.marpetgeo.2010.05.002
Savignano, 2016, (Un)Coupled thrust belt-foreland deformation in the northern Patagonian Andes: new insights from the Esquel-Gastre sector (41°30′–43°S), Tectonics, 35, 2636, 10.1002/2016TC004225
Scasso, 2012, Integrated bio- and lithofacies analysis of coarse-grained, tide-dominated deltaic environments across the Cretaceous/Paleogene boundary in Patagonia, Argentina, Cretac. Res., 36, 37, 10.1016/j.cretres.2012.02.002
Schwartz, 2017, Using detrital zircon U-Pb ages to calculate Late Cretaceous sedimentation rates in the Magallanes-Austral basin, Patagonia, Basin Res., 29, 725, 10.1111/bre.12198
Spalletti, 1996, Estuarine and shallow-marine sedimentation in the upper cretaceouse lower Tertiary west-central Patagonian Basin (Argentina), vol. 117, 81
Spalletti, 1996, A pull apart volcanic related Tertiary basin, an example from the Patagonian Andes, J. South Am. Earth Sci., 9, 197, 10.1016/0895-9811(96)00006-5
Suárez, 2001, Jurassic to Miocene K–Ar dates from eastern central Patagonian Cordillera plutons, Chile (45°–48° S), Geol. Mag., 183, 53, 10.1017/S0016756801004903
Suárez, 2010, Cretaceous slab segmentation in southwestern Gondwana, Geol. Mag., 147, 193, 10.1017/S0016756809990355
Suárez, 2009, Relationship between volcanism and marine sedimentation in northern Austral (Aisén) Basin, central Patagonia: stratigraphic, U–Pb SHRIMP and paleontologic evidence, J. South Am. Earth Sci., 27, 309, 10.1016/j.jsames.2008.11.009
Suárez, 2009
Suárez, 2014, Cenomanian-? early Turonian minimum age of the Chubut Group, Argentina: SHRIMP U-Pb geochronology, J. South Am. Earth Sci., 50, 67, 10.1016/j.jsames.2013.10.008
Thomson, 2002, Late Cenozoic geomorphic and tectonic evolution of the Patagonian Andes between latitudes 42°S and 46°S: an appraisal based on fission-track results from the transpressional intra-arc Liquiñe-Ofqui fault zone, Geol. Soc. Am. Bull., 114, 1159, 10.1130/0016-7606(2002)114<1159:LCGATE>2.0.CO;2
Thomson, 2001, Mesozoic-Cenozoic denudation history of the Patagonian Andes (southern Chile) and its correlation to different subduction processes, Tectonics, 20, 693, 10.1029/2001TC900013
Uliana, 1989, Mesozoic extension and the formation of Argentine sedimentary basins, Am. Assoc. Pet. Geol. Mem., 46, 599
Vervoort, 1996, Behavior of hafnium and neodymium isotopes in the crust: constraints from Precambrian crustally derived granites, Geochim. Cosmochim. Acta, 60, 3717, 10.1016/0016-7037(96)00201-3
Vervoort, 1999, Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time, Geochim. Cosmochim. Acta, 63, 533, 10.1016/S0016-7037(98)00274-9
Wilf, 2010, Early Eocene 40Ar/39Ar age for the Pampa de Jones plant, frog, and insect biota (Huitrera Formation, Neuquén province, Patagonia, Argentina), AMEGHINIANA Rev. Asoc. Paleontol. Argent., 47, 207
Zaffarana, 2018, First geochemical and geochronological characterization of Late Cretaceous mesosilicic magmatism in Gastre, Northern Patagonia, and its tectonic relation to other coeval volcanic rocks in the region, Geol. Mag.
Zaffarana, 2012, Paleomagnetism and geochemistry from the upper cretaceous Tres Picos Prieto locality (43°S), Patagonian plateau basalts, Andean Geol., 39, 53
Zaffarana, 2012, Palaeomagnetism and 40Ar/39Ar dating from Lower Jurassic rocks in Gastre, central Patagonia: further data to explore tectonomagmatic events associated with the break-up of Gondwana, J. Geol. Soc. Lond., 169, 371, 10.1144/0016-76492011-089
Zaffarana, 2014, The late Triassic central Patagonian batholith: magma hybridization, 40Ar/39Ar ages and thermobarometry, J. South Am. Earth Sci., 55, 94, 10.1016/j.jsames.2014.06.006