Creep–fatigue interaction damage model and its application in modified 9Cr–1Mo steel

Nuclear Engineering and Design - Tập 241 - Trang 4856-4861 - 2011
Guodong Zhang1,2, Yanfen Zhao1, Fei Xue1,3, Jinna Mei1, Zhaoxi Wang1, Changyu Zhou2, Lu Zhang1
1Suzhou Nuclear Power Research Institute, Suzhou 215004, PR China
2School of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing 210009, PR China
3Department of Material Science and Engineering, Tsinghua University, Beijing 10084, China

Tài liệu tham khảo

Bloom, 2004, Materials to deliver the promise of fusion power-progress and challenges, J. Nucl. Mater., 329–333, 12, 10.1016/j.jnucmat.2004.04.141 Chaboche, 1987, Continuum Damage Mechanics: present state and future trends, Nucl. Eng. Des., 105, 19, 10.1016/0029-5493(87)90225-1 Chen, 2007, Research on fatigue–creep interaction damage of steel 1.25Cr0.5Mo, Acta Metal. Sin., 43, 637 Choudhary, 2011, Creep behaviour of modified 9Cr–1Mo ferritic steel, J. Nucl. Mater., 412, 82, 10.1016/j.jnucmat.2011.02.024 Fan, 2009, A CDM-based study of fatigue–creep interaction behavior, Int. J. Pres. Ves. Pip., 86, 628, 10.1016/j.ijpvp.2009.04.003 Fournier, 2008, Creep–fatigue–oxidation interactions in a 9Cr–1Mo martensitic steel. Part I. Effect of tensile holding period on fatigue lifetime, Int. J. Fatigue, 30, 649, 10.1016/j.ijfatigue.2007.05.007 Fournier, 2009, High temperature creep–fatigue-oxidation interactions in 9–12%Cr martensitic steels, J. Nucl. Mater., 386–388, 418, 10.1016/j.jnucmat.2008.12.139 Jing, 2003, An effective continuum damage mechanics model for creep–fatigue life assessment of a steam turbine rotor, Int. J. Pres. Ves. Pip., 80, 389, 10.1016/S0308-0161(03)00070-X Kim, 2007, Continuum damage mechanics-based creep–fatigue-interacted life prediction of nickel-based superalloy at high temperature, Scripta Mater., 57, 1149, 10.1016/j.scriptamat.2007.08.014 Kim, 2008, Characterization of creep–fatigue in ferritic 9Cr–1Mo–V–Nb steel using ultrasonic velocity, J. Nucl. Mater., 377, 496, 10.1016/j.jnucmat.2008.04.012 Kneifl, 2001, Damage of low-alloy high temperature steels loaded by low-cycle fatigue and creep, Int. J. Pres. Ves. Pip., 78, 921, 10.1016/S0308-0161(01)00107-7 Krajcinovic, 1987 Lee, 2007, Creep–fatigue damage for a structure with dissimilar metal welds of modified 9Cr–1Mo steel and 316 stain steel, Int. J. Fatigue, 29, 1868, 10.1016/j.ijfatigue.2007.02.009 Lemaitre, 1979, Application of damage concepts to predict creep–fatigues, Trans. ASME J. Eng. Mater. Tech., 101, 284, 10.1115/1.3443689 Lemaitre, 1984, How to use damage mechanics, Nucl. Eng. Des., 80, 233, 10.1016/0029-5493(84)90169-9 Lemaitre, 1987, Damage measurements, Eng. Fract. Mech., 28, 643, 10.1016/0013-7944(87)90059-2 Rabotnov, 1969 Swindeman, 2004, Issues in replacing Cr–Mo steels and stainless steels with 9Cr–1Mo–V steel, Int. J. Pres. Ves. Pip., 81, 507, 10.1016/j.ijpvp.2003.12.009 Wang, 1992, Low cycle fatigue and cycle dependent creep with continuum mechanics, Int. J. Damage Mech., 1, 237, 10.1177/105678959200100204 Yang, 1997, A continuous low cycle fatigue damage model and its application in engineering materials, Int. J. Fatigue, 19, 687, 10.1016/S0142-1123(97)00102-3