Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf0.3Zr0.7NiSn0.98Sb0.02

Materials Today Physics - Tập 9 - Trang 100134 - 2019
M.M. Al Malki1,2, Q. Qiu3, T. Zhu3, G.J. Snyder1, D.C. Dunand1
1Department of Materials Science & Engineering, Northwestern University, Evanston, IL 60208, USA
2Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
3School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Tài liệu tham khảo

Goldsmid, 2016, 1 Snyder, 2011, 101 Yang, 2006, Thermoelectric materials for space and automotive power generation, MRS Bull., 31, 224, 10.1557/mrs2006.49 O'Brien, 2008, Safe radioisotope thermoelectric generators and heat sources for space applications, J. Nucl. Mater., 377, 506, 10.1016/j.jnucmat.2008.04.009 Orr, 2016, A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes, Appl. Therm. Eng., 101, 490, 10.1016/j.applthermaleng.2015.10.081 Al-Merbati, 2013, Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance, Appl. Therm. Eng., 50, 683, 10.1016/j.applthermaleng.2012.07.021 Bos, 2014, Half-Heusler thermoelectrics: a complex class of materials, J. Phys. Condens. Matter, 26, 433201, 10.1088/0953-8984/26/43/433201 Huang, 2016, Recent progress in half-Heusler thermoelectric materials, Mater. Res. Bull., 76, 107, 10.1016/j.materresbull.2015.11.032 Zeier, 2016, Engineering half-Heusler thermoelectric materials using Zintl chemistry, Nat. Rev. Mater., 1, 16032, 10.1038/natrevmats.2016.32 Bartholomé, 2014, Thermoelectric modules based on half-Heusler materials produced in large quantities, J. Electron. Mater., 43, 1775, 10.1007/s11664-013-2863-x Yu, 2018, High performance p-type half-Heusler thermoelectric materials, J. Phys. D Appl. Phys., 51, 113001, 10.1088/1361-6463/aaaa58 Fu, 2015, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nat. Commun., 6, 8144, 10.1038/ncomms9144 Kimura, 1998, Ductility and toughness in intermetallics, Intermetallics, 6, 567, 10.1016/S0966-9795(98)00061-2 Anand, 2018, A valence balanced rule for discovery of 18-electron half-Heuslers with defects, Energy Environ. Sci., 11, 1480, 10.1039/C8EE00306H Zeier, 2017, Using the 18-electron rule to understand the nominal 19-electron half-Heusler NbCoSb with Nb vacancies, Chem. Mater., 29, 1210, 10.1021/acs.chemmater.6b04583 Joshi, 2011, Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach, Adv. Energy. Mater., 1, 643, 10.1002/aenm.201100126 Uher, 1999, Transport properties of pure and doped MNiSn (M= Zr, Hf), Phys. Rev. B, 59, 8615, 10.1103/PhysRevB.59.8615 Jung, 2010, Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M= Ti, Zr, Hf), J. Alloy. Comp., 489, 328, 10.1016/j.jallcom.2009.09.139 Berche, 2018, Oxidation of half-Heusler NiTiSn materials: implications for thermoelectric applications, Intermetallics, 92, 62, 10.1016/j.intermet.2017.09.014 Kassner, 2015 Nabarro, 2018 Li, 2017, Compressive creep behaviour of hot-pressed PbTe, Scr. Mater., 134, 71, 10.1016/j.scriptamat.2017.02.044 Guan, 2013, Compressive creep behavior of cast Bi2Te3, Mater. Sci. Eng. A, 565, 321, 10.1016/j.msea.2012.12.052 Michi, 2018, Compressive creep behavior of hot-pressed Mg1.96Al0.04Si0.97Bi0.03, Scr. Mater., 148, 10, 10.1016/j.scriptamat.2018.01.011 Chang, 2018, Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties, Acta Mater., 158, 239, 10.1016/j.actamat.2018.07.050 Iwanaga, 2011, A high temperature apparatus for measurement of the Seebeck coefficient, Rev. Sci. Instrum., 82, 063905, 10.1063/1.3601358 Borup, 2012, Measurement of the electrical resistivity and Hall coefficient at high temperatures, Rev. Sci. Instrum., 83, 123902, 10.1063/1.4770124 Krez, 2015, Long-term stability of phase-separated half-Heusler compounds, Phys. Chem. Chem. Phys., 17, 29854, 10.1039/C4CP04875J Rausch, 2015, Long-term stability of (Ti/Zr/Hf) CoSb1−xSnx thermoelectric p-type half-Heusler compounds upon thermal cycling, Energy Technol., 3, 1217, 10.1002/ente.201500183 Xie, 2012, Recent advances in nanostructured thermoelectric half-Heusler compounds, Nanomaterials, 2, 379, 10.3390/nano2040379 Hichour, 2012, Theoretical investigations of NiTiSn and CoVSn compounds, J. Phys. Chem. Solids, 73, 975, 10.1016/j.jpcs.2012.03.014 2013 Herzig, 2005, 337 Frost, 1982 Sastry, 2001, Influence of temperature and strain rate on the flow stress of an FeAl alloy, Mater. Sci. Eng. A, 299, 157, 10.1016/S0921-5093(00)01380-0 Hamada, 1995, Power-law creep diagram of γ-Ti-53Al intermetallics, Mater. Sci. Eng. A, 192, 716, 10.1016/0921-5093(94)03292-0 Nicholls, 1977, Steady-state creep of an alloy based on the intermetallic compound Ni3Al (γ′), J. Mater. Sci., 12, 2456, 10.1007/BF00553933 Hanada, 1989, Superplasticity in a recrystallized Ni3Al polycrystal doped with boron, Mater. Trans., 30, 77, 10.2320/matertrans1989.30.77 Rosenkranz, 1992, 288 Subramanian, 1995, Compressive creep behavior of Nb5Si3, Scr. Metall. Mater., 32, 1227, 10.1016/0956-716X(95)00130-N Ren, 2008, The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy, Acta Mater., 56, 5954, 10.1016/j.actamat.2008.07.055 Koc, 2013, 41 Davidow, 2013, A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-doped Ge0.87Pb0.13Te, J. Electron. Mater., 42, 1542, 10.1007/s11664-012-2316-y Rogl, 2016, Mechanical properties of half-Heusler alloys, Acta Mater., 107, 178, 10.1016/j.actamat.2016.01.031 Zamanzade, 2016, A review on the properties of iron aluminide intermetallics, Crystals, 6, 10, 10.3390/cryst6010010 Welsch, 1993 Kayser, 1981, The elastic constants of Ni3Al at 0 and 23.5⁰ C, Phys. Status Solidi, 64, 335, 10.1002/pssa.2210640136