Creep behavior and postcreep thermoelectric performance of the n-type half-Heusler alloy Hf0.3Zr0.7NiSn0.98Sb0.02
Tài liệu tham khảo
Goldsmid, 2016, 1
Snyder, 2011, 101
Yang, 2006, Thermoelectric materials for space and automotive power generation, MRS Bull., 31, 224, 10.1557/mrs2006.49
O'Brien, 2008, Safe radioisotope thermoelectric generators and heat sources for space applications, J. Nucl. Mater., 377, 506, 10.1016/j.jnucmat.2008.04.009
Orr, 2016, A review of car waste heat recovery systems utilising thermoelectric generators and heat pipes, Appl. Therm. Eng., 101, 490, 10.1016/j.applthermaleng.2015.10.081
Al-Merbati, 2013, Thermodynamics and thermal stress analysis of thermoelectric power generator: influence of pin geometry on device performance, Appl. Therm. Eng., 50, 683, 10.1016/j.applthermaleng.2012.07.021
Bos, 2014, Half-Heusler thermoelectrics: a complex class of materials, J. Phys. Condens. Matter, 26, 433201, 10.1088/0953-8984/26/43/433201
Huang, 2016, Recent progress in half-Heusler thermoelectric materials, Mater. Res. Bull., 76, 107, 10.1016/j.materresbull.2015.11.032
Zeier, 2016, Engineering half-Heusler thermoelectric materials using Zintl chemistry, Nat. Rev. Mater., 1, 16032, 10.1038/natrevmats.2016.32
Bartholomé, 2014, Thermoelectric modules based on half-Heusler materials produced in large quantities, J. Electron. Mater., 43, 1775, 10.1007/s11664-013-2863-x
Yu, 2018, High performance p-type half-Heusler thermoelectric materials, J. Phys. D Appl. Phys., 51, 113001, 10.1088/1361-6463/aaaa58
Fu, 2015, Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials, Nat. Commun., 6, 8144, 10.1038/ncomms9144
Kimura, 1998, Ductility and toughness in intermetallics, Intermetallics, 6, 567, 10.1016/S0966-9795(98)00061-2
Anand, 2018, A valence balanced rule for discovery of 18-electron half-Heuslers with defects, Energy Environ. Sci., 11, 1480, 10.1039/C8EE00306H
Zeier, 2017, Using the 18-electron rule to understand the nominal 19-electron half-Heusler NbCoSb with Nb vacancies, Chem. Mater., 29, 1210, 10.1021/acs.chemmater.6b04583
Joshi, 2011, Enhancement in thermoelectric figure-of-merit of an n-type half-Heusler compound by the nanocomposite approach, Adv. Energy. Mater., 1, 643, 10.1002/aenm.201100126
Uher, 1999, Transport properties of pure and doped MNiSn (M= Zr, Hf), Phys. Rev. B, 59, 8615, 10.1103/PhysRevB.59.8615
Jung, 2010, Thermal expansion and melting temperature of the half-Heusler compounds: MNiSn (M= Ti, Zr, Hf), J. Alloy. Comp., 489, 328, 10.1016/j.jallcom.2009.09.139
Berche, 2018, Oxidation of half-Heusler NiTiSn materials: implications for thermoelectric applications, Intermetallics, 92, 62, 10.1016/j.intermet.2017.09.014
Kassner, 2015
Nabarro, 2018
Li, 2017, Compressive creep behaviour of hot-pressed PbTe, Scr. Mater., 134, 71, 10.1016/j.scriptamat.2017.02.044
Guan, 2013, Compressive creep behavior of cast Bi2Te3, Mater. Sci. Eng. A, 565, 321, 10.1016/j.msea.2012.12.052
Michi, 2018, Compressive creep behavior of hot-pressed Mg1.96Al0.04Si0.97Bi0.03, Scr. Mater., 148, 10, 10.1016/j.scriptamat.2018.01.011
Chang, 2018, Compressive creep behavior of hot-pressed GeTe based TAGS-85 and effect of creep on thermoelectric properties, Acta Mater., 158, 239, 10.1016/j.actamat.2018.07.050
Iwanaga, 2011, A high temperature apparatus for measurement of the Seebeck coefficient, Rev. Sci. Instrum., 82, 063905, 10.1063/1.3601358
Borup, 2012, Measurement of the electrical resistivity and Hall coefficient at high temperatures, Rev. Sci. Instrum., 83, 123902, 10.1063/1.4770124
Krez, 2015, Long-term stability of phase-separated half-Heusler compounds, Phys. Chem. Chem. Phys., 17, 29854, 10.1039/C4CP04875J
Rausch, 2015, Long-term stability of (Ti/Zr/Hf) CoSb1−xSnx thermoelectric p-type half-Heusler compounds upon thermal cycling, Energy Technol., 3, 1217, 10.1002/ente.201500183
Xie, 2012, Recent advances in nanostructured thermoelectric half-Heusler compounds, Nanomaterials, 2, 379, 10.3390/nano2040379
Hichour, 2012, Theoretical investigations of NiTiSn and CoVSn compounds, J. Phys. Chem. Solids, 73, 975, 10.1016/j.jpcs.2012.03.014
2013
Herzig, 2005, 337
Frost, 1982
Sastry, 2001, Influence of temperature and strain rate on the flow stress of an FeAl alloy, Mater. Sci. Eng. A, 299, 157, 10.1016/S0921-5093(00)01380-0
Hamada, 1995, Power-law creep diagram of γ-Ti-53Al intermetallics, Mater. Sci. Eng. A, 192, 716, 10.1016/0921-5093(94)03292-0
Nicholls, 1977, Steady-state creep of an alloy based on the intermetallic compound Ni3Al (γ′), J. Mater. Sci., 12, 2456, 10.1007/BF00553933
Hanada, 1989, Superplasticity in a recrystallized Ni3Al polycrystal doped with boron, Mater. Trans., 30, 77, 10.2320/matertrans1989.30.77
Rosenkranz, 1992, 288
Subramanian, 1995, Compressive creep behavior of Nb5Si3, Scr. Metall. Mater., 32, 1227, 10.1016/0956-716X(95)00130-N
Ren, 2008, The high-temperature elastic moduli of polycrystalline PbTe measured by resonant ultrasound spectroscopy, Acta Mater., 56, 5954, 10.1016/j.actamat.2008.07.055
Koc, 2013, 41
Davidow, 2013, A comparison between the mechanical and thermoelectric properties of three highly efficient p-type GeTe-rich compositions: TAGS-80, TAGS-85, and 3% Bi2Te3-doped Ge0.87Pb0.13Te, J. Electron. Mater., 42, 1542, 10.1007/s11664-012-2316-y
Rogl, 2016, Mechanical properties of half-Heusler alloys, Acta Mater., 107, 178, 10.1016/j.actamat.2016.01.031
Zamanzade, 2016, A review on the properties of iron aluminide intermetallics, Crystals, 6, 10, 10.3390/cryst6010010
Welsch, 1993
Kayser, 1981, The elastic constants of Ni3Al at 0 and 23.5⁰ C, Phys. Status Solidi, 64, 335, 10.1002/pssa.2210640136