Creation of Two-Dimensional High Temperature Superconductivity Under the Influence of an Electric Field
Tóm tắt
This study discusses the conditions for the occurrence of two-dimensional superconductivity under the action of an electric field on an La2 – xSrxCuO4 plate at a temperature lower than the maximum temperature of the superconducting transition, but when the concentration of charge carriers falls outside the superconductivity range. The study is carried out for a lanthanum-strontium cuprate plate at various hole concentrations, as well as temperature, and potential differences. A quasi-two-dimensional superconducting layer arises near the surface of the plate. The thickness of the superconducting layer is several angstroms and independent of the field strength in the range investigated. The thickness depends only on the concentration of holes and temperature. In addition, the distance of the superconducting layer from the edge of the plate is found to be a function of all three factors. The conditions used for conducting the experiment are also formulated.
Tài liệu tham khảo
J. G. Bednorz and K. A. Müller, Z. Phys. B 4, 189 (1986).
B. Keimer, S. A. Kivelson, M. R. Norman, et al., Nature 518, 179 (2015).
T. Yoshida, X. J. Zhou, D. H. Lu, et al., J. Phys.: Cond. Matter 19, 125209 (2007).
T. M. Rice, Phys. Rev. A 140, 1889 (1965).
N. Reyren, S. Thiel, A. D. Caviglia, et al., Science 317, 1196 (2007).
C. Brun, T. Cren, V. Cherkez, et al., Nature Phys. 10, 444 (2014).
T. Uchihashi, Supercond. Sci. Technol. 30, 1 (2016).
T. Uchihashi, S. Yoshizava, E. Minamitami, et al., Mol. Syst. Des. Eng. 4, 511 (2019).
M. V. Sadovskii, Phys.-Usp. 59, 947 (2016).
D. P. Pavlov, R. R. Zagidullin, V. M. Mikhailov, et al., Phys. Rev. Lett. 122, 237001 (2019).
R. E. Glover and M. D. Sherill, Phys. Rev. Lett. 5, 248 (1960).
S. I. Shkuratov, J. Vac. Sci. Technol. 11, 353 (1993).
S. Sakai, Phys. Rev. B 47, 9042 (1993).
K. Moravets, Phys. Rev. B 66, 172508 (2002).
P. Konsin and B. Sorkin, Phys. Rev. B 58, 5795 (1998).
C. H. Ahn, J.-M. Triscone, and J. Mannhart, Nature 424, 1015 (2003).
A. E. Galashev, O. R. Rakhmanova, K. P. Katin, et al., Russ. J. Phys. Chem. B 14, 1055 (2021).
G. V. Simbirtseva, N. P. Piven’, and S. D. Babenko, Russ. J. Phys. Chem. B 14, 980 (2021).
V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, Phys. Lett. A 379 (5), 421 (2015).
V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, JETP Lett. 104, 730 (2016).
L. D. Landau and E. M. Lifshitz, Statistical Physics, Part 1 (Pergamon, Oxford, 1980).
L. D. Landau, and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984).
I. M. Gelfand and S. V. Fomin, Calculus of Variations (Prentice-Hall, Englewood Cliffs, NJ, 1963).
S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (North Holland, Amsterdam, 1987).
H. Takagi, R. J. Cava, M. Marezio, et al., Phys. Rev. Lett. 68, 3777 (1992).
T. Nagano, T. Y. Tomioka, Y. Nakayama, et al., Phys. Rev. B 48, 9689 (1993).
K. Yamada, C. H. Lee, K. Kurahashi, et al., Phys. Rev. B 57, 6165 (1998).
H. Takagi, T. Ido, S. Ishibashi, et al., Phys. Rev. B 40, 2254 (1989).
J. B. Torrance, A. Bezinge, A. I. Nazzal, T. C. Huang, et al., Phys. Rev. B 40, 8872 (1989).
R. Liang, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 73, 180505 (2006).
M. A. Kozhushner, V. S. Posvyanskii, B. V. Lidskii, et al., Phys. Solid State 62 (8), 1154 (2020).