Crack closure and fatigue crack growth near threshold of a metastable austenitic stainless steel
Tài liệu tham khảo
Perdahcioğlu, 2009, Constitutive modeling of metastable austenitic stainless steel, Int J Mater Forming, 2, 419, 10.1007/s12289-009-0478-9
Tomita, 1995, Constitutive modeling of TRIP steel and its application to the improvement of mechanical properties, Int J Mech Sci, 37, 1295, 10.1016/0020-7403(95)00039-Z
Stringfellow, 1992, A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels, Acta Metallurgica et Materialia, 40, 1703, 10.1016/0956-7151(92)90114-T
Beese, 2012, Anisotropic plasticity model coupled with Lode angle dependent strain-induced transformation kinetics law, J Mech Phys Solids, 60, 1922, 10.1016/j.jmps.2012.06.009
Beese, 2011, Effect of stress triaxiality and Lode angle on the kinetics of strain-induced austenite-to-martensite transformation, Acta Materialia, 59, 2589, 10.1016/j.actamat.2010.12.040
Talonen, 2007, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta materialia, 55, 6108, 10.1016/j.actamat.2007.07.015
Lange TW, Crookerand EA. How yield strength and fracture toughness considerations can influence fatigue design procedures for structural steels; 1970.
Robertson, 2008, The effect of prestrain and bake hardening on the low-cycle fatigue properties of TRIP steel, Int J Fatigue, 30, 587, 10.1016/j.ijfatigue.2007.06.002
Zerbst, 2009, Fracture and damage mechanics modelling of thin-walled structures–an overview, Eng Fract Mech, 76, 5, 10.1016/j.engfracmech.2007.10.005
Pineau, 1974, Influence of strain-induced martensitic transformations on fatigue crack growth rates in stainless steels, Metall Trans, 5, 1103, 10.1007/BF02644322
Mei, 1990, Influence of deformation-induced martensite on fatigue crack propagation in 304-type steels, Metall Trans A, 21, 3137, 10.1007/BF02647310
Schuster, 1983, Fatigue of annealed and cold worked stable and unstable stainless steels, Metall Trans A, 14, 2077, 10.1007/BF02662374
Biswas, 2007, Load history effect on FCGR behaviour of 304LN stainless steel, Int J Fatigue, 29, 786, 10.1016/j.ijfatigue.2006.06.003
Mills, 1987, Near thershold fatigue crack Growth behavior for 316 stainless Steel, J Testing Eval, 325
Martelo DF, Mateo AM, Chapetti MD. unpublished results.
David F. Martelo, Fatiga y Fractura de Aceros Austeníticos Metaestables, Doctoral dissertation. Universidad Nacional de Mar Del Plata; 2013.
Suresh S. Fatigue of Materials. s.l. Cambridge University Press; 1998, doi: 10.1002/adma.19930050420.
Hedström Peter. Deformation induced martensitic transformation of metastable stainless steel AISI 301. Doctoral dissertation. Luleå University of Technology; 2005.
Beese Allison M. Experimental investigation and constitutive modeling of the large deformation behavior of anisotropic steel sheets undergoing strain-induced phase transformation. Doctoral dissertation. Massachusetts Institute of Technology; 2011.
Talonen J. Effect of strain-induced α’- martensite Trasnformation on Mechanical Properties of Metastable Austenitic Stainless Steels. Doctoral dissertation. Helsinki University of Technology; 2007.
Tada Hiroshi, Paris PC, IRWIN GR. The stress analysis of cracks handbook ASME. New York; 2000. p. 55–56.
E647-08E01, standard Test Method for Measurement of fatigue Crcak Growth Rates. Annual Book of ASTM Standards ASTM. Philadelphia, PA : s.n.; 2010.
Elber W. The significance of fatigue crack closure. ASTM STP 486. Damage tolerance in aircraft structures; 1971. p. 230–242.
Paris, 1999, Service load fatigue damage—a historical perspective, Int J Fatigue, 21, S35, 10.1016/S0142-1123(99)00054-7
Kujawski, 2001, A new (ΔK, Kmax) driving force parameter for crack growth in aluminum alloys, Int J Fatigue, 23, 733, 10.1016/S0142-1123(01)00023-8
Shin, 1985, Fatigue crack growth from sharp notches, Int J Fatigue, 7, 87, 10.1016/0142-1123(85)90038-6
Macha, 1979, On the variation of fatigue-crack-opening load with measurement location, Exp Mech, 19, 207, 10.1007/BF02324983
Zhang, 2005, Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method, Int J Fatigue, 27, 1314, 10.1016/j.ijfatigue.2005.06.010
BRAY GH, Donald KJ. Separating the influence of Kmax from closure-related stress ratio effects using the adjusted compliance ratio tecnique. ASTM STP 1343, Advances in Fatigue Crack Closure Measurement and Analysis; 1999. p. 57–78.
Kujawski, 1987, A fatigue crack growth model with load ratio effects, Eng Fract Mech, 28, 367, 10.1016/0013-7944(87)90182-2
Vasudevan, 1992, Reconsideration of fatigue crack closure, Scripta metallurgica et materialia, 27, 1673, 10.1016/0956-716X(92)90164-A
Vasudevan, 1993, Two critical stress intensities for threshold fatigue crack propagation, Scripta metallurgica et materialia, 28, 65, 10.1016/0956-716X(93)90538-4
Vasudevan, 1995, Classification of fatigue crack growth behavior, Metall Mater Trans A, 26, 1221, 10.1007/BF02670617
McEvily, 1998, Crack closure and the fatigue-crack propagation threshold as a function of load ratio, Fatigue Fract Eng Mater Struct, 21, 847
Vasudeven, 1994, A review of crack closure, fatigue crack threshold and related phenomena, Mater Sci Eng: A, 188, 1, 10.1016/0921-5093(94)90351-4
Pippan, 1991, Threshold and effective threshold of fatigue crack propagation in ARMCO iron I: the influence of grain size and cold working, Mater Sci Eng: A, 138, 1, 10.1016/0921-5093(91)90671-9
Nakajima K, Yokoe M, Miyata T. The effect of Microstructure and prestrain on fatigue crack propagation of dual phase steels. p. 1541–1548.
Gao, 1992, Crack paths, microstructure, and fatigue crack growth in annealed and cold-rolled AISI 304 stainless steels, Metall Trans A, 23, 55, 10.1007/BF02660877
Sadananda, 2004, Crack tip driving forces and crack growth representation under fatigue, Int J Fatigue, 26, 39, 10.1016/S0142-1123(03)00105-1
Kalnaus, 2009, An experimental investigation of fatigue crack growth of stainless steel 304L, Int J Fatigue, 31, 840, 10.1016/j.ijfatigue.2008.11.004
Suresh, 1983, Crack deflection: implications for the growth of long and short fatigue cracks, Metall Trans A, 14, 2375, 10.1007/BF02663313
Noroozi, 2005, A two parameter driving force for fatigue crack growth analysis, Int J Fatigue, 27, 1277, 10.1016/j.ijfatigue.2005.07.002