Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System

Cell - Tập 163 Số 3 - Trang 759-771 - 2015
Bernd Zetsche1,2,3,4,5, Jonathan S. Gootenberg1,2,3,6,5, Omar O. Abudayyeh1,2,3,5, Ian M. Slaymaker1,2,3,5, Kira S. Makarova7, Patrick Essletzbichler1,2,3,5, Sara E. Volz1,2,3,5, Julia Joung1,2,3,5, John van der Oost8, Aviv Regev1,9, Eugene V. Koonin7, Feng Zhang1,2,3,5
1Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
2Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
3Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
4Department of Developmental Pathology, Institute of Pathology, Bonn Medical School, Sigmund Freud Street 25, 53127 Bonn, Germany
5McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
6Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
7National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
8Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, Netherlands
9Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Altschul, 1997, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res., 25, 3389, 10.1093/nar/25.17.3389

Barrangou, 2014, CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity, Mol. Cell, 54, 234, 10.1016/j.molcel.2014.03.011

Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140

Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689

Cencic, 2014, Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage, PLoS ONE, 9, e109213, 10.1371/journal.pone.0109213

Chan, 2011, Efficient mutagenesis of the rhodopsin gene in rod photoreceptor neurons in mice, Nucleic Acids Res., 39, 5955, 10.1093/nar/gkr196

Charpentier, 2015, Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity, FEMS Microbiol. Rev., 39, 428, 10.1093/femsre/fuv023

Chylinski, 2013, The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems, RNA Biol., 10, 726, 10.4161/rna.24321

Clark, 1988, Novel non-templated nucleotide addition reactions catalyzed by procaryotic and eucaryotic DNA polymerases, Nucleic Acids Res., 16, 9677, 10.1093/nar/16.20.9677

Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science, 339, 819, 10.1126/science.1231143

Crooks, 2004, WebLogo: a sequence logo generator, Genome Res., 14, 1188, 10.1101/gr.849004

Deltcheva, 2011, CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III, Nature, 471, 602, 10.1038/nature09886

Drozdetskiy, 2015, JPred4: a protein secondary structure prediction server, Nucleic Acids Res., 43, W389, 10.1093/nar/gkv332

Edgar, 2004, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res., 32, 1792, 10.1093/nar/gkh340

Edgar, 2007, PILER-CR: fast and accurate identification of CRISPR repeats, BMC Bioinformatics, 8, 18, 10.1186/1471-2105-8-18

Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279, 10.1038/nbt.2808

Gardner, 2002, Sequence of Plasmodium falciparum chromosomes 2, 10, 11 and 14, Nature, 419, 531, 10.1038/nature01094

Garneau, 2010, The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA, Nature, 468, 67, 10.1038/nature09523

Gasiunas, 2012, Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria, Proc. Natl. Acad. Sci. USA, 109, E2579, 10.1073/pnas.1208507109

Grissa, 2007, CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats, Nucleic Acids Res., 35, W52, 10.1093/nar/gkm360

Hale, 2009, RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex, Cell, 139, 945, 10.1016/j.cell.2009.07.040

Heidrich, 2015, Investigating CRISPR RNA Biogenesis and Function Using RNA-seq, 1

Horvath, 2010, CRISPR/Cas, the immune system of bacteria and archaea, Science, 327, 167, 10.1126/science.1179555

Hsu, 2013, DNA targeting specificity of RNA-guided Cas9 nucleases, Nat. Biotechnol., 31, 827, 10.1038/nbt.2647

Hsu, 2014, Development and applications of CRISPR-Cas9 for genome engineering, Cell, 157, 1262, 10.1016/j.cell.2014.05.010

Jackson, 2014, Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli, Science, 345, 1473, 10.1126/science.1256328

Jiang, 2015, CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems, Annu. Rev. Microbiol., 10.1146/annurev-micro-091014-104441

Jiang, 2013, RNA-guided editing of bacterial genomes using CRISPR-Cas systems, Nat. Biotechnol., 31, 233, 10.1038/nbt.2508

Jiang, 2015, STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition, Science, 348, 1477, 10.1126/science.aab1452

Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829

Li, 2009, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics, 25, 1754, 10.1093/bioinformatics/btp324

Lorenz, 2011, ViennaRNA Package 2.0, Algorithms Mol. Biol., 6, 26, 10.1186/1748-7188-6-26

Makarova, 2015, Annotation and classification of CRISPR-Cas systems, Methods Mol. Biol., 1311, 47, 10.1007/978-1-4939-2687-9_4

Makarova, 2011, Evolution and classification of the CRISPR-Cas systems, Nat. Rev. Microbiol., 9, 467, 10.1038/nrmicro2577

Makarova, 2015, Updated evolutionary classification of CRISPR-Cas systems and cas genes, Nat. Rev. Microbiol., 10.1038/nrmicro3569

Maresca, 2013, Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining, Genome Res., 23, 539, 10.1101/gr.145441.112

Marraffini, 2008, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science, 322, 1843, 10.1126/science.1165771

Mojica, 2009, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, 155, 733, 10.1099/mic.0.023960-0

Mulepati, 2014, Structural biology. Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target, Science, 345, 1479, 10.1126/science.1256996

Nishimasu, 2014, Crystal structure of Cas9 in complex with guide RNA and target DNA, Cell, 156, 935, 10.1016/j.cell.2014.02.001

Price, 2010, FastTree 2--approximately maximum-likelihood trees for large alignments, PLoS ONE, 5, e9490, 10.1371/journal.pone.0009490

Ran, 2015, In vivo genome editing using Staphylococcus aureus Cas9, Nature, 520, 186, 10.1038/nature14299

Sapranauskas, 2011, The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli, Nucleic Acids Res., 39, 9275, 10.1093/nar/gkr606

Schunder, 2013, First indication for a functional CRISPR/Cas system in Francisella tularensis, Int. J. Med. Microbiol., 303, 51, 10.1016/j.ijmm.2012.11.004

Sinkunas, 2013, In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus, EMBO J., 32, 385, 10.1038/emboj.2012.352

Söding, 2006, HHsenser: exhaustive transitive profile search using HMM-HMM comparison, Nucleic Acids Res., 34, W374, 10.1093/nar/gkl195

Sorek, 2013, CRISPR-mediated adaptive immune systems in bacteria and archaea, Annu. Rev. Biochem., 82, 237, 10.1146/annurev-biochem-072911-172315

Vestergaard, 2014, CRISPR adaptive immune systems of Archaea, RNA Biol., 11, 156, 10.4161/rna.27990

Zhang, 2013, Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis, Mol. Cell, 50, 488, 10.1016/j.molcel.2013.05.001