Cover-based bounds on the numerical rank of Gaussian kernels
Tài liệu tham khảo
Baker, 1977
Belkin, 2003, Laplacian eigenmaps for dimensionality reduction and data representation, Neural Comput., 15, 1373, 10.1162/089976603321780317
Bermanis, 2013, Multiscale data sampling and function extension, Appl. Comput. Harmon. Anal., 34, 15, 10.1016/j.acha.2012.03.002
Do Carmo, 1976
Coifman, 2006, Diffusion maps, Appl. Comput. Harmon. Anal., 21, 5, 10.1016/j.acha.2006.04.006
Coifman, 2006, Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions, Appl. Comput. Harmon. Anal., 21, 31, 10.1016/j.acha.2005.07.005
Coifman, 2005, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Natl. Acad. Sci. USA, 102, 7426, 10.1073/pnas.0500334102
Cox, 1994
Donoho, 2003, Hessian eigenmaps: New locally linear embedding techniques for high dimensional data, Proc. Natl. Acad. Sci. USA, 100, 5591, 10.1073/pnas.1031596100
Hotelling, 1933, Analysis of a complex of statistical variables into principal components, J. Educ. Psychol., 24, 10.1037/h0071325
Jolliffe, 1986
Kruskal, 1964, Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis, Psychometrika, 29, 1, 10.1007/BF02289565
Mika, 1999, Kernel pca and de-noising in feature spaces, 536
Press, 1992
Reed, 1980
Roweis, 2000, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323, 10.1126/science.290.5500.2323
Schölkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467
Stewart, 1990
Tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319
Von Luxburg, 2008, Consistency of spectral clustering, Ann. Statist., 36, 555, 10.1214/009053607000000640
Wendland, 2005
Yang, 2008, Manifold alignment via local tangent space alignment, 10.1109/CSSE.2008.1332
Zhang, 2002