Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications

Chemical Society Reviews - Tập 45 Số 20 - Trang 5635-5671
José L. Segura1,2,3,4,5, María J. Mancheño1,2,3,4,5, Félix Zamora6,7,8,4,9
1Departamento de Química Orgánica
2Facultad de Química
3Madrid
4Spain
5Universidad Complutense de Madrid
628049 Madrid
7Departamento de Química Inorgánica and Condensed Matter Physics Center (IFMAC)
8Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia)
9Universidad Autónoma de Madrid

Tóm tắt

Covalent organic-frameworks (COFs) are an emerging class of porous and ordered materials formed by condensation reactions of organic molecules.

Từ khóa


Tài liệu tham khảo

Cote, 2005, Science, 310, 1166, 10.1126/science.1120411

Wan, 2008, Angew. Chem., Int. Ed., 47, 8826, 10.1002/anie.200803826

Tilford, 2006, Chem. Mater., 18, 5296, 10.1021/cm061177g

Spitler, 2010, Nat. Chem., 2, 672, 10.1038/nchem.695

Tilford, 2008, Adv. Mater., 20, 2741, 10.1002/adma.200800030

El-Kaderi, 2007, Science, 316, 268, 10.1126/science.1139915

Jiang, 2010, Top. Curr. Chem., 293, 1

Cote, 2007, J. Am. Chem. Soc., 129, 12914, 10.1021/ja0751781

Jiang, 2008, J. Am. Chem. Soc., 130, 7710, 10.1021/ja8010176

Uribe-Romo, 2009, J. Am. Chem. Soc., 131, 4570, 10.1021/ja8096256

Furukawa, 2009, J. Am. Chem. Soc., 131, 8875, 10.1021/ja9015765

Doonan, 2010, Nat. Chem., 2, 235, 10.1038/nchem.548

Kuhn, 2008, Angew. Chem., Int. Ed., 47, 3450, 10.1002/anie.200705710

Spitler, 2011, Chem. Sci., 2, 1588, 10.1039/C1SC00260K

Ding, 2011, J. Am. Chem. Soc., 133, 19816, 10.1021/ja206846p

Feng, 2011, Chem. Commun., 47, 1979, 10.1039/c0cc04386a

Dawson, 2012, Prog. Polym. Sci., 37, 530, 10.1016/j.progpolymsci.2011.09.002

Smith, 2016, Chem. Commun., 52, 3690, 10.1039/C5CC10221A

Waller, 2015, Acc. Chem. Res., 48, 3053, 10.1021/acs.accounts.5b00369

Lanni, 2011, J. Am. Chem. Soc., 133, 13975, 10.1021/ja203807h

Ding, 2013, Chem. Soc. Rev., 42, 548, 10.1039/C2CS35072F

Feng, 2012, Chem. Soc. Rev., 41, 6010, 10.1039/c2cs35157a

Chen, 2015, J. Am. Chem. Soc., 137, 3241, 10.1021/ja509602c

Shinde, 2015, Chem. Commun., 51, 310, 10.1039/C4CC07104B

Kandambeth, 2013, Angew. Chem., Int. Ed., 52, 13052, 10.1002/anie.201306775

Kandambeth, 2015, Nat. Commun., 6, ArtNum. 6786, 10.1038/ncomms7786

Kahveci, 2013, CrystEngComm, 15, 1524, 10.1039/C2CE26487K

Chen, 2013, J. Am. Chem. Soc., 135, 546, 10.1021/ja3100319

Xu, 2015, Nat. Chem., 7, 905, 10.1038/nchem.2352

Lukose, 2011, Chem. – Eur. J., 17, 2388, 10.1002/chem.201001290

Song, 2014, Chem. Commun., 50, 788, 10.1039/C3CC47652A

Spitler, 2011, J. Am. Chem. Soc., 133, 19416, 10.1021/ja206242v

Dalapati, 2015, Nat. Commun., 6, 7786, 10.1038/ncomms8786

Zhou, 2014, J. Am. Chem. Soc., 136, 15885, 10.1021/ja5092936

Zhang, 2013, J. Am. Chem. Soc., 135, 16336, 10.1021/ja409033p

Fang, 2014, Nat. Commun., 5, . 4503, 10.1038/ncomms5503

Liu, 2016, Science, 351, 365, 10.1126/science.aad4011

Uribe-Romo, 2011, J. Am. Chem. Soc., 133, 11478, 10.1021/ja204728y

Rowan, 2002, Angew. Chem., Int. Ed., 41, 898, 10.1002/1521-3773(20020315)41:6<898::AID-ANIE898>3.0.CO;2-E

Stegbauer, 2014, Chem. Sci., 5, 2789, 10.1039/C4SC00016A

Dalapati, 2013, J. Am. Chem. Soc., 135, 17310, 10.1021/ja4103293

Li, 2015, Chem. – Eur. J., 21, 12079, 10.1002/chem.201501206

Li, 2014, Chem. Commun., 50, 13825, 10.1039/C4CC05665E

Vyas, 2015, Nat. Commun., 6, 8508, 10.1038/ncomms9508

Pachfule, 2015, Chem. Commun., 51, 11717, 10.1039/C5CC04130A

Kandambeth, 2012, J. Am. Chem. Soc., 134, 19524, 10.1021/ja308278w

Biswal, 2013, J. Am. Chem. Soc., 135, 5328, 10.1021/ja4017842

Chandra, 2013, J. Am. Chem. Soc., 135, 17853, 10.1021/ja408121p

Chandra, 2014, J. Am. Chem. Soc., 136, 6570, 10.1021/ja502212v

Guo, 2013, Nat. Commun., 4, 2736, 10.1038/ncomms3736

Zeng, 2015, J. Am. Chem. Soc., 137, 1020, 10.1021/ja510926w

de la Hoz, 2005, Chem. Soc. Rev., 34, 164, 10.1039/B411438H

Wei, 2015, Chem. Commun., 51, 12178, 10.1039/C5CC04680G

Friščić, 2012, Chem. Soc. Rev., 41, 3493, 10.1039/c2cs15332g

de la Peña Ruigómez, 2015, Chem. – Eur. J., 21, 10666, 10.1002/chem.201501692

Yang, 2015, Chem. Commun., 51, 12254, 10.1039/C5CC03413B

Mahmood, 2015, Nat. Commun., 6, 6486, 10.1038/ncomms7486

Shiraki, 2015, Chem. Lett., 44, 1488, 10.1246/cl.150678

Mas-Balleste, 2011, Nanoscale, 3, 20, 10.1039/C0NR00323A

Zhang, 2015, ACS Nano, 9, 9451, 10.1021/acsnano.5b05040

Payamyar, 2016, Chem. Commun., 52, 18, 10.1039/C5CC07381B

Rodriguez-San-Miguel, 2016, Chem. Commun., 52, 4113, 10.1039/C5CC10283A

Berlanga, 2011, Small, 7, 1207, 10.1002/smll.201002264

Berlanga, 2012, Chem. Commun., 48, 7976, 10.1039/c2cc32187d

Bunck, 2013, J. Am. Chem. Soc., 135, 14952, 10.1021/ja408243n

Gourdon, 2008, Angew. Chem., Int. Ed., 47, 6950, 10.1002/anie.200802229

Liang, 2009, Coord. Chem. Rev., 253, 2959, 10.1016/j.ccr.2009.07.028

Greenwood, 2013, Langmuir, 29, 653, 10.1021/la304506s

Tanoue, 2014, J. Nanosci. Nanotechnol., 14, 2211, 10.1166/jnn.2014.8540

Xu, 2013, ACS Nano, 7, 8066, 10.1021/nn403328h

Liu, 2013, J. Am. Chem. Soc., 135, 10470, 10.1021/ja403464h

Yue, 2015, Chem. Commun., 51, 14318, 10.1039/C5CC05689F

Xu, 2014, Angew. Chem., Int. Ed., 53, 9564, 10.1002/anie.201400273

Zha, 2015, ACS Appl. Mater. Interfaces, 7, 17837, 10.1021/acsami.5b04185

DeBlase, 2015, ACS Nano, 9, 3178, 10.1021/acsnano.5b00184

Feldblyum, 2015, Chem. Commun., 51, 13894, 10.1039/C5CC04679C

Wang, 2014, Chin. J. Chem., 32, 838, 10.1002/cjoc.201400260

Cai, 2014, Chem. Sci., 5, 4693, 10.1039/C4SC02593H

Chen, 2014, Chem. Commun., 50, 6161, 10.1039/C4CC01825G

Huang, 2015, J. Am. Chem. Soc., 137, 7079, 10.1021/jacs.5b04300

Lohse, 2015, Chem. Mater., 28, 626, 10.1021/acs.chemmater.5b04388

Zhang, 2014, RSC Adv., 4, 51544, 10.1039/C4RA09304F

Thote, 2014, Chem. – Eur. J., 20, 15961, 10.1002/chem.201403800

Pachfule, 2014, Chem. Commun., 50, 3169, 10.1039/C3CC49176E

Hoppe, 2004, J. Mater. Res., 19, 1924, 10.1557/JMR.2004.0252

Li, 2012, Nat. Photonics, 6, 153, 10.1038/nphoton.2012.11

Makal, 2012, Chem. Soc. Rev., 41, 7761, 10.1039/c2cs35251f

Slater, 2015, Science, 348, 988, 10.1126/science.aaa8075

Suh, 2012, Chem. Rev., 112, 782, 10.1021/cr200274s

Getman, 2012, Chem. Rev., 112, 703, 10.1021/cr200217c

Li, 2012, Chem. Rev., 112, 869, 10.1021/cr200190s

Sumida, 2012, Chem. Rev., 112, 724, 10.1021/cr2003272

Herm, 2013, Science, 340, 960, 10.1126/science.1234071

Cychosz, 2010, Chem. Sci., 1, 293, 10.1039/c0sc00144a

Yaghi, 2003, Nature, 423, 705, 10.1038/nature01650

Mendoza-Cortes, 2012, J. Phys. Chem. A, 116, 1621, 10.1021/jp206981d

Babarao, 2012, Cryst. Growth Des., 12, 5349, 10.1021/cg3009688

Martin, 2014, Angew. Chem., Int. Ed., 53, 9240, 10.1002/anie.201403375

Li, 2014, J. Mol. Model., 20, 2346, 10.1007/s00894-014-2346-x

Ashourirad, 2015, Chem. Mater., 27, 1349, 10.1021/cm504435m

Patel, 2013, Nat. Commun., 4, 1357, 10.1038/ncomms2359

Rabbani, 2013, Chem. – Eur. J., 19, 3324, 10.1002/chem.201203753

Jin, 2013, CrystEngComm, 15, 1484, 10.1039/C2CE26394G

Burchell, 2000, SAE, 2001

Amirjalayer, 2012, J. Phys. Chem. C, 116, 4921, 10.1021/jp211280m

Kaleeswaran, 2015, J. Mater. Chem. C, 3, 7159, 10.1039/C5TC00670H

Gao, 2015, Chin. J. Chem., 33, 90, 10.1002/cjoc.201400550

Zhu, 2013, Chem. Mater., 25, 1630, 10.1021/cm400019f

Mohanty, 2011, Nat. Commun., 2, 401, 10.1038/ncomms1405

Cavenati, 2004, J. Chem. Eng. Data, 49, 1095, 10.1021/je0498917

Shen, 2014, Chem. Commun., 50, 11238, 10.1039/C4CC05021E

Huang, 2015, Angew. Chem., Int. Ed., 54, 2986, 10.1002/anie.201411262

Jin, 2013, Chem. Sci., 4, 4505, 10.1039/c3sc52034j

Du, 2012, Chem. Commun., 48, 4606, 10.1039/c2cc30781b

Das, 2015, Chem. Sci., 6, 3931, 10.1039/C5SC00512D

Xie, 2015, J. Mater. Chem. C, 3, 10066, 10.1039/C5TC02256H

Thomas, 2010, Angew. Chem., Int. Ed., 49, 8328, 10.1002/anie.201000167

Corma, 1997, Chem. Rev., 97, 2373, 10.1021/cr960406n

Corma, 2010, Chem. Rev., 110, 4606, 10.1021/cr9003924

Singh, 2002, Synth. React. Inorg. Met.-Org. Chem., 32, 171, 10.1081/SIM-120013155

Miyaura, 1995, Chem. Rev., 95, 2457, 10.1021/cr00039a007

Llabrés i Xamena, 2007, J. Catal., 250, 294, 10.1016/j.jcat.2007.06.004

Hou, 2015, Microporous Mesoporous Mater., 214, 108, 10.1016/j.micromeso.2015.05.002

Pachfule, 2014, J. Mater. Chem. A, 2, 7944, 10.1039/C4TA00284A

Lin, 2015, Science, 349, 1208, 10.1126/science.aac8343

Fang, 2014, Angew. Chem., Int. Ed., 53, 2878, 10.1002/anie.201310500

Xu, 2014, Chem. Commun., 50, 1292, 10.1039/C3CC48813F

Wu, 2015, Chem. Commun., 51, 10096, 10.1039/C5CC03457D

Gao, 2015, Microporous Mesoporous Mater., 213, 59, 10.1016/j.micromeso.2015.04.009

Nakao, 2011, Chem. Soc. Rev., 40, 4893, 10.1039/c1cs15122c

Ishimoto, 2009, Angew. Chem., Int. Ed., 48, 8900, 10.1002/anie.200904694

Lin, 2015, RSC Adv., 5, 41017, 10.1039/C5RA04433B

Merino, 2013, Chem. Mater., 25, 981, 10.1021/cm400123d

Notz, 2004, Acc. Chem. Res., 37, 580, 10.1021/ar0300468

MacMillan, 2008, Nature, 455, 304, 10.1038/nature07367

Juhl, 2009, Chem. Soc. Rev., 38, 2983, 10.1039/b816703f

Janiak, 2000, Dalton Trans., 3885, 10.1039/b003010o

Fateeva, 2012, Angew. Chem., Int. Ed., 51, 7440, 10.1002/anie.201202471

Schwinghammer, 2013, Angew. Chem., Int. Ed., 52, 2435, 10.1002/anie.201206817

Nagai, 2013, Angew. Chem., Int. Ed., 52, 3770, 10.1002/anie.201300256

Zhong, 2011, J. Phys. Chem. C, 115, 2423, 10.1021/jp109806m

Kiwi, 1979, Nature, 281, 657, 10.1038/281657a0

Zhang, 2010, Angew. Chem., Int. Ed., 49, 441, 10.1002/anie.200903886

DeRosa, 2002, Coord. Chem. Rev., 233–234, 351, 10.1016/S0010-8545(02)00034-6

Spiller, 1998, J. Porphyrins Phthalocyanines, 2, 145, 10.1002/(SICI)1099-1409(199803/04)2:2<145::AID-JPP60>3.0.CO;2-2

Ma, 2015, Electrochem. Commun., 52, 53, 10.1016/j.elecom.2015.01.021

Costentin, 2013, Chem. Soc. Rev., 42, 2423, 10.1039/C2CS35360A

Deng, 2010, Science, 327, 846, 10.1126/science.1181761

Dogru, 2014, Chem. Commun., 50, 5531, 10.1039/C3CC46767H

Segura, 2005, Mater. Sci. Eng., C: Biomimetic Supramol. Syst., 25, 835, 10.1016/j.msec.2005.06.017

Dogru, 2013, Angew. Chem., Int. Ed., 52, 2920, 10.1002/anie.201208514

Wan, 2011, Chem. Mater., 23, 4094, 10.1021/cm201140r

Sariciftci, 1992, Science, 258, 1474, 10.1126/science.258.5087.1474

Yu, 1995, Science, 270, 1789, 10.1126/science.270.5243.1789

Braga, 2009, Adv. Mater., 21, 1473, 10.1002/adma.200802733

Ortiz, 2010, J. Am. Chem. Soc., 132, 8440, 10.1021/ja1018783

Chen, 2014, J. Am. Chem. Soc., 136, 9806, 10.1021/ja502692w

Segura, 2001, Angew. Chem., Int. Ed., 40, 1372, 10.1002/1521-3773(20010417)40:8<1372::AID-ANIE1372>3.0.CO;2-I

Cai, 2014, Chem. Sci., 5, 4693, 10.1039/C4SC02593H

Bertrand, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 4923, 10.1073/pnas.1221824110

Ding, 2014, Chem. – Eur. J., 20, 14614, 10.1002/chem.201405330

Jin, 2014, Chem. – Eur. J., 20, 14608, 10.1002/chem.201402844

Coropceanu, 2007, Chem. Rev., 107, 926, 10.1021/cr050140x

Feng, 2012, Angew. Chem., Int. Ed., 51, 2618, 10.1002/anie.201106203

Colson, 2011, Science, 332, 228, 10.1126/science.1202747

Segura, 2015, Chem. Soc. Rev., 44, 6850, 10.1039/C5CS00181A

Mai, 2014, Chem. Rev., 114, 11828, 10.1021/cr500177a

F. Beguin and E.Frackowiak, Supercapacitors: Materials, Systems and Applications, John Wiley & Sons, 2013

DeBlase, 2013, J. Am. Chem. Soc., 135, 16821, 10.1021/ja409421d

Wang, 2015, RSC Adv., 5, 27290, 10.1039/C5RA02251G

Xu, 2014, Nat. Chem., 6, 564, 10.1038/nchem.1984

Gu, 2010, Angew. Chem., Int. Ed., 49, 1477, 10.1002/anie.200906560

Huang, 2013, ACS Appl. Mater. Interfaces, 5, 8845, 10.1021/am402649g

Wang, 2005, Chem. – Eur. J., 11, 160, 10.1002/chem.200400705

Ziółek, 2006, J. Chem. Phys., 124, 124518, 10.1063/1.2179800

Stassen, 2015, Nat. Mater., 304, 10.1038/nmat4509

Carne-Sanchez, 2013, Nat. Chem., 5, 203, 10.1038/nchem.1569

Dai, 2016, Angew. Chem., Int. Ed., 55, 213, 10.1002/anie.201508473