Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance*

Chinese Physics B - Tập 29 Số 10 - Trang 106801 - 2020
Pengpeng Zhang, Shi-Hua Tan, Xiao-Fang Peng, Mengqiu Long

Tóm tắt

By applying nonequilibrium Green’s functions in combination with the density-functional theory, we investigate the electronic, thermal, and thermoelectric properties of four kinds of bases in DNA perpendicularly coupling between two ZGNR electrodes. The results show that the electron transport is highly sensitive to different base-ZGNR coupling geometries, and the system can present large rectifying and negative differential resistance effects. Moreover, the fluctuations of electronic transmission and super-low thermal conductance result in significant enhancement of the thermoelectric figure of merit (ZT): the ZT will be over 1.4 at room temperature, and over 1.6 at 200 K. The results show that the base-ZGNR coupling devices can present large rectifying, negative differential resistance, and enhanced thermoelectric effects.

Từ khóa


Tài liệu tham khảo

Tao, 2006, Nat. Nanotechnol., 1, 173, 10.1038/nnano.2006.130

Angione, 2011, Mater. Today., 14, 424, 10.1016/S1369-7021(11)70187-0

Aradhya, 2013, Nat. Nanotechnol., 8, 399, 10.1038/nnano.2013.91

Yee, 2011, ACS Nano, 5, 9256, 10.1021/nn203520v

Capozzi, 2015, Nat. Nanotechnol., 10, 522, 10.1038/nnano.2015.97

Cao, 2010, Nano Res., 3, 350, 10.1007/s12274-010-1038-9

Chen, 2007, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.146803

Geng, 2007, J. Phys. Chem. C, 111, 10.1021/jp077533f

Fan, 2016, Carbon, 98, 179, 10.1016/j.carbon.2015.11.011

Kuang, 2016, J. Am. Chem. Soc., 138, 10.1021/jacs.6b07416

Wu, 2019, J. Mater. Chem. A., 7, 10.1039/C9TA04642A

Liu, 2018, J. Phys.: Condens. Matter, 30, 10.1088/1361-648X/aac7f5

Li, 2017, Appl. Phys. Lett., 111, 10.1063/1.4998305

Wu, 2020, Sci. China-Phys. Mech. Astron., 63, 10.1007/s11433-019-1528-y

Zeng, 2020, J. Mater. Chem. A, 8, 10.1039/D0TA02423F

Liang, 2013, Appl. Phys. Lett., 102, 10.1063/1.4800777

Xu, 2014, Small, 10, 2182, 10.1002/smll.201303701

He, 2017, Science, 357, 1369, 10.1126/science.aak9997

Gao, 2019, Org. Electron., 67, 57, 10.1016/j.orgel.2019.01.006

Krsti@@@, 2015, Nanotechnology, 26, 10.1088/0957-4484/26/8/084001

Russ, 2016, Nat. Rev. Mater., 1, 10.1038/natrevmats.2016.50

Zhang, 2014, Adv. Mater., 26, 6829, 10.1002/adma.v26.40

Wu, 2014, Org. Electron., 15, 3615, 10.1016/j.orgel.2014.10.010

Chen, 2014, Nano Lett., 14, 819, 10.1021/nl404182k

Liu, 2016, Nano Lett., 16, 4954, 10.1021/acs.nanolett.6b01565

Peng, 2016, Carbon, 100, 36, 10.1016/j.carbon.2015.12.093

Lv, 2015, Proc. Natl. Acad. Sci. USA, 112, 10.1073/pnas.1505993112

Xu, 2009, Adv. Mater., 21, 1275, 10.1002/adma.v21:12

Zeng, 2018, Carbon, 127, 611, 10.1016/j.carbon.2017.11.047

Xiao, 2011, ACS Nano, 5, 2749, 10.1021/nn2001849

Hang, 2014, Nano Lett., 14, 3779, 10.1021/nl500755m

Tan, 2015, Carbon, 94, 942, 10.1016/j.carbon.2015.07.083

Heerema, 2016, Nat. Nanotechnol., 11, 127, 10.1038/nnano.2015.307

Zeng, 2011, J. Appl. Phys., 109, 10.1063/1.3600067

Zeng, 2011, J. Phys. Chem. C, 115, 10.1021/jp208248v

He, 2017, Nat. Chem., 9, 33, 10.1038/nchem.2600

Xu, 2017, Nano Lett., 17, 5335, 10.1021/acs.nanolett.7b01745

Baghsiyahi, 2018, Int. J. Mod. Phys. B, 32, 10.1142/S0217979218502077

Büttiker, 1985, Phys. Rev. B, 31, 6207, 10.1103/PhysRevB.31.6207

Taylor, 2001, Phys. Rev. B, 63, 10.1103/PhysRevB.63.121104

Taylor, 2001, Phys. Rev. B, 63, 10.1103/PhysRevB.63.245407

Brandbyge, 2002, Phys. Rev. B, 65, 10.1103/PhysRevB.65.165401

Jiang, 2011, J. Appl. Phys., 109, 10.1063/1.3531573

Wang, 2008, Eur. Phys. J. B, 62, 381, 10.1140/epjb/e2008-00195-8

Shen, 2012, Phys. Rev. B, 86, 10.1103/PhysRevB.86.115419

Kim, 2008, Nat. Nanotech., 3, 408, 10.1038/nnano.2008.163

Son, 2006, Nature, 444, 347, 10.1038/nature05180

Zhang, 2019, Appl. Phys. Express, 12, 10.7567/1882-0786/ab5454

Wang, 2020, Chin. Phys. B, 29, 10.1088/1674-1056/ab84cf

Fan, 2015, Org. Electron., 18, 101, 10.1016/j.orgel.2015.01.023

Chen, 2020, J. Phys.: Condens. Matter, 32, 10.1088/1361-648X/ab5e57

Zhang, 2019, Physica E, 109, 1, 10.1016/j.physe.2018.12.032

Mu, 2020, Org. Electron., 81, 10.1016/j.orgel.2020.105665

Li, 2008, Phys. Rev. Lett., 100, 10.1103/PhysRevLett.100.206802

Im, 2018, ACS Nano, 12, 7067, 10.1021/acsnano.8b02819

Shendure, 2017, Nature, 550, 345, 10.1038/nature24286

Chang, 2010, Nano Lett., 10, 1070, 10.1021/nl1001185

Huang, 2010, Nano Lett., 5, 868, 10.1007/s11671-010-9577-2

Tsutsui, 2010, Nat. Nanotechnol., 5, 286, 10.1038/nnano.2010.42

Pan, 2012, Appl. Phys. Lett., 101, 10.1063/1.4751287