Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship

Materials Today - Tập 67 - Trang 229-255 - 2023
Syed Shoaib Ahmad Shah1, Muhammad Sufyan Javed2, Tayyaba Najam3, Muhammad Altaf Nazir4, Aziz ur Rehman4, Abdul Rauf4, Manzar Sohail5, Francis Verpoort6,7, Shu-Juan Bao1
1Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy, Southwest University, Chongqing, 400715, PR China
2School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
3College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China
4Institute of Chemistry, The Islamia University of Bahawalpur, 63100, Pakistan
5Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad 44000, Pakistan
6State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
7National Research Tomsk Polytechnic University, Lenin Avenue 30, 634050 Tomsk, Russian Federation

Tài liệu tham khảo

Tao, 2006, Chem. Rev., 106, 896, 10.1021/cr040204o 2012, Chem. Rev., 112, 673, 10.1021/cr300014x Natarajan, 2009, Chem. Soc. Rev., 38, 2304, 10.1039/b815106g Li, 2019, EnergyChem, 1 Shah, 2020, Appl Catal B, 268, 10.1016/j.apcatb.2019.118570 Najam, 2022, Chem. Rec., 22, e202100329, 10.1002/tcr.202100329 Shah, 2022, Chem. Catal., 2, 3, 10.1016/j.checat.2021.12.016 Shah, 2021, Small Struct., 3, 2100090, 10.1002/sstr.202100090 Côté Adrien, 2005, Science, 310, 1166, 10.1126/science.1120411 Feng, 2012, Chem. Soc. Rev, 41, 6010, 10.1039/c2cs35157a Waller, 2015, Acc. Chem. Res., 48, 3053, 10.1021/acs.accounts.5b00369 Kandambeth, 2012, J. Am. Chem. Soc., 134, 19524, 10.1021/ja308278w Qian, 2020, J. Am. Chem. Soc., 142, 20763, 10.1021/jacs.0c09727 Yusran, 2019, Natl. Sci. Rev., 7, 170, 10.1093/nsr/nwz122 Yusran, 2020, EnergyChem., 2, 10.1016/j.enchem.2020.100035 Hasija, 2022, Coord, Chem. Rev., 452 Segura, 2019, Chem. Soc. Rev., 48, 3903, 10.1039/C8CS00978C Kandambeth, 2021, Adv. Energy Mater., n/a, 2100177 Zhao, 2021, Chem. Soc. Rev., 50, 6871, 10.1039/D0CS01569E Wei, 2021, ACS Nano, 15, 12741, 10.1021/acsnano.1c05497 Sun, 2020, Adv. Energy Mater., 10, 1904199, 10.1002/aenm.201904199 Spitler, 2011, Chem. Sci., 2, 1588, 10.1039/C1SC00260K Spitler, 2010, Nat. Chem., 2, 672, 10.1038/nchem.695 Dogru, 2013, CrstEngComm., 15, 1500, 10.1039/c2ce26343b Jin, 2013, Chem. Soc. Rev, 42, 6634, 10.1039/c3cs60044k Beaudoin, 2013, Nat. Chem., 5, 830, 10.1038/nchem.1730 Zhu, 2017, Molecules, 22, 1149, 10.3390/molecules22071149 Zhao, 2017, J. Am. Chem. Soc., 139, 13166, 10.1021/jacs.7b07457 Huang, 2016, Nat. Rev. Mater., 1, 16068, 10.1038/natrevmats.2016.68 Smith, 2015, Chem. Commun., 51, 7532, 10.1039/C5CC00379B Du, 2016, Angew. Chem. Int. Ed., 55, 1737, 10.1002/anie.201509014 Hunt, 2008, J. Am. Chem. Soc., 130, 11872, 10.1021/ja805064f Lanni, 2011, J. Am. Chem. Soc., 133, 13975, 10.1021/ja203807h Uribe-Romo, 2011, J. Am. Chem. Soc., 133, 11478, 10.1021/ja204728y Fang, 2014, Nat. Commun., 5, 4503, 10.1038/ncomms5503 Fang, 2015, J. Am. Chem. Soc., 137, 8352, 10.1021/jacs.5b04147 Kandambeth, 2013, Angew. Chem. Int. Ed., 52, 13052, 10.1002/anie.201306775 Kandambeth, 2015, Nat. Commun., 6, 6786, 10.1038/ncomms7786 Li, 2017, J. Am. Chem. Soc., 139, 6042, 10.1021/jacs.7b01523 Chen, 2015, J. Am. Chem. Soc., 137, 3241, 10.1021/ja509602c Xu, 2015, Nat. Chem., 7, 905, 10.1038/nchem.2352 Waller, 2016, J. Am. Chem. Soc., 138, 15519, 10.1021/jacs.6b08377 Li, 2016, Chem. Commun., 52, 7217, 10.1039/C6CC00947F Chandra, 2013, J. Am. Chem. Soc., 135, 17853, 10.1021/ja408121p Chandra, 2014, J. Am. Chem. Soc., 136, 6570, 10.1021/ja502212v Dalapati, 2013, J. Am. Chem. Soc., 135, 17310, 10.1021/ja4103293 Guo, 2013, Nat. Commun., 4, 2736, 10.1038/ncomms3736 Nagai, 2013, Angew. Chem. Int. Ed., 52, 3770, 10.1002/anie.201300256 Das, 2017, J. Am. Chem. Soc., 139, 9558, 10.1021/jacs.7b02836 Chen, 2015, Sci. Rep., 5, 14650, 10.1038/srep14650 Zeng, 2015, J. Am. Chem. Soc., 137, 1020, 10.1021/ja510926w Faury, 2012, J. Phys. Chem. C, 116, 4819, 10.1021/jp300417g Hu, 2022, Chem. Mater., 34, 5249, 10.1021/acs.chemmater.2c00922 Liu, 2020, J. Am. Chem. Soc., 142, 20956, 10.1021/jacs.0c10919 Geng, 2020, Chem. Rev., 120, 8814, 10.1021/acs.chemrev.9b00550 Ibenskas, 2022, J. Phys. Chem. C, 126, 8079, 10.1021/acs.jpcc.2c00805 Zhu, 2017, Molecules, 22 Zeng, 2016, Adv. Mater., 28, 2855, 10.1002/adma.201505004 Kamiya, 2014, Nat. Commun., 5, 5040, 10.1038/ncomms6040 Lin, 2015, Science, 349, 1208, 10.1126/science.aac8343 Mitra, 2017, J. Am. Chem. Soc., 139, 4513, 10.1021/jacs.7b00925 Ding, 2013, Chem. Soc. Rev., 42, 548, 10.1039/C2CS35072F Liu, 2021, Chem. Soc. Rev, 50, 120, 10.1039/D0CS00620C Côté, 2007, J. Am. Chem. Soc., 129, 12914, 10.1021/ja0751781 Kuhn, 2008, Angew. Chem. Int. Ed., 47, 3450, 10.1002/anie.200705710 Feng, 2011, Chem. Commun., 47, 1979, 10.1039/c0cc04386a Ding, 2011, Angew. Chem. Int. Ed., 50, 1289, 10.1002/anie.201005919 Chen, 2013, J. Am. Chem. Soc., 135, 546, 10.1021/ja3100319 Dalapati, 2015, Nat. Commun., 6, 7786, 10.1038/ncomms8786 Yu, 2016, Polym. Chem., 7, 3392, 10.1039/C6PY00281A Spitler, 2012, Angew. Chem. Int. Ed., 51, 2623, 10.1002/anie.201107070 Tilford, 2008, Adv. Mater., 20, 2741, 10.1002/adma.200800030 Nagai, 2011, Nat. Commun., 2, 536, 10.1038/ncomms1542 Zhou, 2014, J. Am. Chem. Soc., 136, 15885, 10.1021/ja5092936 Tian, 2016, Chem. Commun., 52, 11704, 10.1039/C6CC06637B Pang, 2017, Chem. Sci., 8, 3866, 10.1039/C6SC05673C Pang, 2016, J. Am. Chem. Soc., 138, 4710, 10.1021/jacs.6b01244 Yin, 2017, Chem. Commun., 53, 7266, 10.1039/C7CC01045A Ascherl, 2016, Nat. Chem., 8, 310, 10.1038/nchem.2444 Baldwin, 2015, Chem. Mater., 27, 6169, 10.1021/acs.chemmater.5b02053 Mo, 2017, ACS Nano, 11, 11694, 10.1021/acsnano.7b06871 Zhao, 2017, Nanomaterials (Basel), 8, 15, 10.3390/nano8010015 Bisbey, 2017, ACS Cent. Sci., 3, 533, 10.1021/acscentsci.7b00127 Colson John, 2011, Science, 332, 228, 10.1126/science.1202747 Zwaneveld, 2008, J. Am. Chem. Soc., 130, 6678, 10.1021/ja800906f Sahabudeen, 2016, Nat. Commun., 7, 13461, 10.1038/ncomms13461 Feldblyum, 2015, Chem. Commun., 51, 13894, 10.1039/C5CC04679C Cai, 2014, Chem. Sci., 5, 4693, 10.1039/C4SC02593H Dai, 2016, Angew. Chem. Int. Ed., 55, 213, 10.1002/anie.201508473 Das, 2015, Chem. Sci., 6, 3931, 10.1039/C5SC00512D Berlanga, 2011, Small, 7, 1207, 10.1002/smll.201002264 Bunck, 2013, J. Am. Chem. Soc., 135, 14952, 10.1021/ja408243n Li, 2017, ACS Appl. Mater. Interfaces, 9, 8433, 10.1021/acsami.6b15752 Mitra, 2016, J. Am. Chem. Soc., 138, 2823, 10.1021/jacs.5b13533 Wan, 2008, Angew. Chem. Int. Ed., 47, 8826, 10.1002/anie.200803826 Huang, 2013, ACS Appl. Mater. Interfaces, 5, 8845, 10.1021/am402649g Jiang, 2014, J. Mater. Chem. A, 2, 8201, 10.1039/c4ta00555d Pan, 2016, Macromol. Res., 24, 366, 10.1007/s13233-016-4039-z Halder, 2016, Angew. Chem. Int. Ed., 55, 7806, 10.1002/anie.201600087 Kim, 2017, Adv. Funct. Mater., 27, 1700925, 10.1002/adfm.201700925 Liu, 2016, Science, 351, 365, 10.1126/science.aad4011 Smith, 2017, ACS Cent. Sci., 3, 58, 10.1021/acscentsci.6b00331 Yang, 2015, Chem. Commun., 51, 12254, 10.1039/C5CC03413B Tan, 2016, Angew. Chem. Int. Ed., 55, 13979, 10.1002/anie.201606155 Lin, 2017, Chem. Commun., 53, 3649, 10.1039/C7CC00482F Zheng, 2017, Chem. Mater., 29, 2374, 10.1021/acs.chemmater.7b00228 Xu, 2017, Chem. Commun., 53, 11690, 10.1039/C7CC07002K Thompson, 2017, J. Am. Chem. Soc., 139, 10506, 10.1021/jacs.7b05555 Wan, 2011, Chem. Mater., 23, 4094, 10.1021/cm201140r Jin, 2013, Angew. Chem. Int. Ed., 52, 2017, 10.1002/anie.201209513 Xu, 2014, Chem. Commun., 50, 1292, 10.1039/C3CC48813F Huang, 2015, J. Am. Chem. Soc., 137, 7079, 10.1021/jacs.5b04300 Ding, 2011, J. Am. Chem. Soc., 133, 19816, 10.1021/ja206846p Cao, 2009, Angew. Chem. Int. Ed., 48, 4730, 10.1002/anie.200900960 Liao, 2014, J. Mater. Chem. A, 2, 8854, 10.1039/C4TA00523F Wan, 2009, Angew. Chem. Int. Ed., 48, 5439, 10.1002/anie.200900881 Tanaka, 2015, Chem. Soc. Rev., 44, 943, 10.1039/C3CS60443H Feng, 2012, Angew. Chem. Int. Ed., 51, 2618, 10.1002/anie.201106203 Lin, 2017, J. Am. Chem. Soc., 139, 8705, 10.1021/jacs.7b04141 Gottfried, 2015, Surf. Sci. Rep., 70, 259, 10.1016/j.surfrep.2015.04.001 Ding, 2012, Chem. Commun., 48, 8952, 10.1039/c2cc33929c Jin, 2015, J. Am. Chem. Soc., 137, 7817, 10.1021/jacs.5b03553 Jin, 2014, Eur. J., 20, 14608, 10.1002/chem.201402844 Ding, 2014, Eur. J., 20, 14614, 10.1002/chem.201405330 Chandra, 2017, Chem. Mater., 29, 2074, 10.1021/acs.chemmater.6b04178 Feng, 2017, Chem. Commun., 53, 11334, 10.1039/C7CC07024A Wang, 2017, J. Am. Chem. Soc., 139, 4258, 10.1021/jacs.7b02648 Keller, 2017, J. Am. Chem. Soc., 139, 8194, 10.1021/jacs.7b01631 Khattak, 2016, J. Mater. Chem. A, 4, 16312, 10.1039/C6TA05784E Doonan, 2010, Nat. Chem., 2, 235, 10.1038/nchem.548 Huang, 2017, Angew. Chem. Int. Ed., 56, 4982, 10.1002/anie.201611542 Zhai, 2017, Chem. Commun., 53, 4242, 10.1039/C7CC01921A Ning, 2017, J. Am. Chem. Soc., 139, 8897, 10.1021/jacs.7b02696 Chen, 2014, J. Am. Chem. Soc., 136, 9806, 10.1021/ja502692w Xu, 2015, Angew. Chem. Int. Ed., 54, 6814, 10.1002/anie.201501706 Fan, 2017, Eur. J., 23, 5668, 10.1002/chem.201700915 Zhang, 2017, J. Am. Chem. Soc., 139, 8277, 10.1021/jacs.7b03352 Bunck, 2012, Angew. Chem. Int. Ed., 51, 1885, 10.1002/anie.201108462 Bunck, 2013, Chem. Commun., 49, 2457, 10.1039/c3cc40358k El-Kaderi Hani, 2007, Science, 316, 268, 10.1126/science.1139915 Calik, 2016, J. Am. Chem. Soc., 138, 1234, 10.1021/jacs.5b10708 Sun, 2017, J. Am. Chem. Soc., 139, 2786, 10.1021/jacs.6b12885 Ding, 2016, J. Am. Chem. Soc., 138, 3031, 10.1021/jacs.5b10754 Huang, 2017, J. Am. Chem. Soc., 139, 2428, 10.1021/jacs.6b12328 Merí-Bofí, 2017, J. Mater. Chem. A, 5, 17973, 10.1039/C7TA05588A Mendoza-Cortés, 2012, Chem. A Eur. J., 116, 1621 Han, 2017, J. Am. Chem. Soc., 139, 8693, 10.1021/jacs.7b04008 Chen, 2014, Chem. Commun., 50, 6161, 10.1039/C4CC01825G Zhang, 2014, RSC Adv., 4, 51544, 10.1039/C4RA09304F Aiyappa, 2016, Chem. Mater., 28, 4375, 10.1021/acs.chemmater.6b01370 Yamaguchi, 2017, Chem. Commun., 53, 10437, 10.1039/C7CC05841A Pachfule, 2014, Chem. Commun., 50, 3169, 10.1039/C3CC49176E Bhadra, 2017, ACS Appl. Mater. Interfaces, 9, 13785, 10.1021/acsami.7b02355 Thote, 2014, Eur. J., 20, 15961, 10.1002/chem.201403800 Banerjee, 2017, J. Am. Chem. Soc., 139, 16228, 10.1021/jacs.7b07489 Li, 2017, Chem. Sci., 8, 781, 10.1039/C6SC02456D Ma, 2017, Chem. Mater., 29, 6518, 10.1021/acs.chemmater.7b02131 Baldwin, 2016, J. Am. Chem. Soc., 138, 15134, 10.1021/jacs.6b10316 Ghazi, 2016, Adv. Energy Mater., 6, 1601250, 10.1002/aenm.201601250 Mulzer, 2016, ACS Cent. Sci., 2, 667, 10.1021/acscentsci.6b00220 Xu, 2016, ACS Cent. Sci., 2, 586, 10.1021/acscentsci.6b00264 Chandra, 2016, Chem. Mater., 28, 1489, 10.1021/acs.chemmater.5b04947 Shinde, 2016, J. Mater. Chem. A, 4, 2682, 10.1039/C5TA10521H Ma, 2016, J. Am. Chem. Soc., 138, 5897, 10.1021/jacs.5b13490 Montoro, 2017, J. Am. Chem. Soc., 139, 10079, 10.1021/jacs.7b05182 Gao, 2016, Chem. Commun., 52, 1498, 10.1039/C5CC09225F Sakaushi, 2015, Acc. Chem. Res., 48, 1591, 10.1021/acs.accounts.5b00010 Yang, 2022, Chem. Soc. Rev. Wei, 2018, J. Am. Chem. Soc., 140, 4623, 10.1021/jacs.8b00571 Bojdys, 2010, Adv. Mater., 22, 2202, 10.1002/adma.200903436 Huang, 2019, Angew. Chem. Int. Ed., 58, 8676, 10.1002/anie.201900046 Huang, 2018, Angew. Chem. Int. Ed., 57, 8316, 10.1002/anie.201801112 Ghosh, 2015, Nat. Mater., 14, 505, 10.1038/nmat4220 Planells, 2013, J. Mater. Chem. A, 1, 6949, 10.1039/c3ta11417a Pachfule, 2018, J. Am. Chem. Soc., 140, 1423, 10.1021/jacs.7b11255 Li, 2016, J. Am. Chem. Soc., 138, 14783, 10.1021/jacs.6b09563 Liu, 2018, Chem, 4, 1696, 10.1016/j.chempr.2018.05.003 Peng, 2015, ChemSusChem, 8, 3208, 10.1002/cssc.201500755 Shinde, 2015, Chem. Commun., 51, 310, 10.1039/C4CC07104B Xu, 2016, J. Am. Chem. Soc., 138, 11489, 10.1021/jacs.6b07516 Han, 2020, Chem. Soc. Rev, 49, 6248, 10.1039/D0CS00009D Wang, 2019, Angew. Chem. Int. Ed., 58, 9443, 10.1002/anie.201903534 Li, 2018, Chem. Rev., 118, 3752, 10.1021/acs.chemrev.7b00653 Zhang, 2019, ACS Sustain. Chem. Eng., 7, 5065, 10.1021/acssuschemeng.8b05887 Liang, 2021, Adv. Mater., 33, 2105647, 10.1002/adma.202105647 Ding, 2019, J. Mater. Chem. A, 7, 4689, 10.1039/C8TA12046C Mu, 2018, ACS Appl. Mater. Interfaces, 10, 41350, 10.1021/acsami.8b14671 Lohse, 2018, Adv. Funct. Mater., 28, 1705553, 10.1002/adfm.201705553 Furukawa, 2013, Science, 341, 1230444, 10.1126/science.1230444 Yang, 2018, J. Am. Chem. Soc., 140, 14614, 10.1021/jacs.8b09705 Frediani, 2007, J. Mol. Catal. A: Chem., 271, 80, 10.1016/j.molcata.2007.02.030 Leng, 2016, Eur. J., 22, 9087, 10.1002/chem.201601334 Yan, 2019, J. Am. Chem. Soc., 141, 2920, 10.1021/jacs.9b00485 Gonçalves, 2016, ChemCatChem, 8, 743, 10.1002/cctc.201500926 Kaleeswaran, 2017, ChemPlusChem, 82, 1253, 10.1002/cplu.201700342 McCaffrey, 2014, J. Am. Chem. Soc., 136, 1782, 10.1021/ja412606t Lu, 2017, J. Am. Chem. Soc., 139, 17082, 10.1021/jacs.7b07918 Chen, 2018, Inorg. Chem., 57, 2678, 10.1021/acs.inorgchem.7b03077 Huang, 2022, Chem. Eng. J., 427 Yan, 2018, J. Mater. Chem. A, 6, 8793, 10.1039/C8TA01940A Dong, 2020, Angew. Chem. Int. Ed., 59, 13722, 10.1002/anie.202004796 Li, 2020, Energy Storage Mater., 31, 115, 10.1016/j.ensm.2020.06.005 Yan, 2018, J. Mater. Chem. A, 6, 15905, 10.1039/C8TA05985C An, 2021, Energy Storage Mater., 41, 354, 10.1016/j.ensm.2021.06.010 You, 2021, J. Clean. Prod., 291, 10.1016/j.jclepro.2021.125822 Shao, 2021, J. Energy Chem., 63, 54, 10.1016/j.jechem.2021.04.041 Kou, 2021, Appl Catal B, 291, 10.1016/j.apcatb.2021.120146 Dong, 2021, Chem. Eng. J., 403, 10.1016/j.cej.2020.126383 Yi, 2019, J. Mater. Chem. A, 7, 1252, 10.1039/C8TA09490J Zhang, 2021, Appl. Surf. Sci., 563 Wang, 2020, J. Phys. Chem. C, 124, 17675, 10.1021/acs.jpcc.0c04360 Tian, 2019, J. Phys. Chem. C, 123, 22114, 10.1021/acs.jpcc.9b02547 Li, 2020, Sci. Adv., 6 Huang, 2020, ACS Catal., 10, 6579, 10.1021/acscatal.0c01459 Liu, 2021, The Innovation, 2 Chen, 2020, Angew. Chem. Int. Ed., 59, 5050, 10.1002/anie.201904291 Cheng, 2018, Chem. Commun., 54, 13563, 10.1039/C8CC07784C Gao, 2015, Microporous Mesoporous Mater., 213, 59, 10.1016/j.micromeso.2015.04.009 George, 1995, Chem. Rev., 95, 475, 10.1021/cr00035a001 Wu, 2015, Chem. Commun., 51, 10096, 10.1039/C5CC03457D Lun, 2011, J. Am. Chem. Soc., 133, 5806, 10.1021/ja202223d Wang, 2012, Eur. J., 18, 6718, 10.1002/chem.201200753 Banerjee, 2009, J. Am. Chem. Soc., 131, 7524, 10.1021/ja901440g Alamillo, 2013, Angew. Chem. Int. Ed., 52, 10349, 10.1002/anie.201304693 Tong, 2010, ChemSusChem, 3, 350, 10.1002/cssc.200900224 Liu, 2013, Green Chem., 15, 2895, 10.1039/c3gc41139g Gao, 2015, ACS Catal., 5, 6648, 10.1021/acscatal.5b01874 Llabrés i Xamena, 2007, J. Catal., 250, 294, 10.1016/j.jcat.2007.06.004 Hou, 2015, Microporous Mesoporous Mater., 214, 108, 10.1016/j.micromeso.2015.05.002 Heintz, 2019, ChemCatChem, 11, 4286, 10.1002/cctc.201900894 Puthiaraj, 2019, Mol. Catal., 473 Mu, 2017, ACS Appl. Mater. Interfaces, 9, 22856, 10.1021/acsami.7b05870 Vardhan, 2019, ACS Sustain. Chem. Eng., 7, 4878, 10.1021/acssuschemeng.8b05373 Maia, 2020, European Journal, 26, 2051, 10.1002/chem.201904845 Cifuentes, 2018, Top. Catal., 61, 689, 10.1007/s11244-018-0910-9 Li, 2019, J. Mater. Chem. A, 7, 5482, 10.1039/C8TA11058A Ma, 2019, Dalton Trans., 48, 7352, 10.1039/C8DT05056B Leng, 2016, RSC Adv., 6, 37403, 10.1039/C6RA05304A Chen, 2014, Green Chem., 16, 3978, 10.1039/C4GC00314D Zhang, 2015, Appl. Catal. A, 489, 117, 10.1016/j.apcata.2014.10.023 Brown, 2015, Catal. Commun., 59, 50, 10.1016/j.catcom.2014.09.040 Hervés, 2012, Chem. Soc. Rev., 41, 5577, 10.1039/c2cs35029g Phan, 2006, Adv. Synth. Catal., 348, 609, 10.1002/adsc.200505473 Niu, 2010, ACS Nano, 4, 1987, 10.1021/nn100093y Akermark, 1975, J. Org. Chem., 40, 1365, 10.1021/jo00897a048 Pachfule, 2014, J. Mater. Chem. A, 2, 7944, 10.1039/C4TA00284A Kamiya, 2014, Nat. Commun., 5, 10.1038/ncomms6040 Mullangi, 2015, Sci. Rep., 5, 10876, 10.1038/srep10876 Zahmakıran, 2010, J. Am. Chem. Soc., 132, 6541, 10.1021/ja101602d Kang, 2009, Angew. Chem. Int. Ed., 48, 2565, 10.1002/anie.200805715 Patial, 2021, Environ. Res., 197, 10.1016/j.envres.2021.111134 Bu, 2021, Mol. Catal., 499 Cao, 2021, Appl Catal B, 294, 10.1016/j.apcatb.2021.120238 Mullangi, 2018, Small, 14, 1801233, 10.1002/smll.201801233 Fagnoni, 2007, Chem. Rev., 107, 2725, 10.1021/cr068352x Li, 2020, Coord. Chem. Rev., 412, 10.1016/j.ccr.2020.213262 Zhang, 2022, Angew. Chem. Int. Ed., n/a, e202204108 Xiang, 2013, J. Mater. Chem. A, 1, 2691, 10.1039/C2TA00063F Li, 2021, Matter, 4, 2230, 10.1016/j.matt.2021.03.022 Gong, 2020, J. Am. Chem. Soc., 142, 16723, 10.1021/jacs.0c07206 Yang, 2021, Adv. Mater., 33, 2104002, 10.1002/adma.202104002 Wang, 2021, Angew. Chem. Int. Ed., 60, 9321, 10.1002/anie.202100464 Sarkar, 2021, Chem. Commun., 57, 8550, 10.1039/D1CC02616J Li, 2021, Small (Weinheim an der Bergstrasse Germany), 17, 2100918, 10.1002/smll.202100918 Martínez-Abadía, 2021, Angew. Chem. Int. Ed., 60, 9941, 10.1002/anie.202100434 Ding, 2011, J. Am. Chem. Soc., 133, 14510, 10.1021/ja2052396 Jin, 2013, Chem. Sci., 4, 4505, 10.1039/c3sc52034j Furukawa, 2009, J. Am. Chem. Soc., 131, 8875, 10.1021/ja9015765 Stegbauer, 2014, Chem. Sci., 5, 2789, 10.1039/C4SC00016A Liu, 2017, Natl. Sci. Rev., 4, 359, 10.1093/nsr/nwx039 Biswal, 2019, J. Am. Chem. Soc., 141, 11082, 10.1021/jacs.9b03243 Ebrahimi, 2017, Nature, 542, 423, 10.1038/nature21503 Chen, 2019, Angew. Chem. Int. Ed., 58, 6430, 10.1002/anie.201902543 Jin, 2017, Science, 357, 673, 10.1126/science.aan0202 Zhao, 2019, Angew. Chem. Int. Ed., 58, 5376, 10.1002/anie.201901194 Bi, 2019, Nat. Commun., 10, 10.1038/s41467-019-10504-6 Yadav, 2016, J. Mater. Chem. A, 4, 9413, 10.1039/C6TA01625A Jiménez-Almarza, 2019, ChemCatChem, 11, 4916, 10.1002/cctc.201901061 Hao, 2019, Chem. Mater., 31, 8100, 10.1021/acs.chemmater.9b02718 Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175 Quint, 2016, J. Am. Chem. Soc., 138, 7436, 10.1021/jacs.6b04069 Vyas, 2015, Nat. Commun., 6, 10.1038/ncomms9508 Butchosa, 2014, J. Phys. Chem. C, 118, 4314, 10.1021/jp411854f Stegbauer, 2018, Adv. Energy Mater., 8, 1703278, 10.1002/aenm.201703278 Bhadra, 2019, J. Am. Chem. Soc., 141, 6152, 10.1021/jacs.9b01891 Ohara, 2010, Angew. Chem. Int. Ed., 49, 5507, 10.1002/anie.201001902 Wang, 2018, Nat. Chem., 10, 1180, 10.1038/s41557-018-0141-5 Yang, 2016, Angew. Chem. Int. Ed., 55, 9202, 10.1002/anie.201603532 Chen, 2019, J. Mater. Chem. A, 7, 998, 10.1039/C8TA10046B Feng, 2012, Adv. Mater., 24, 3026, 10.1002/adma.201201185 Zhang, 2013, Angew. Chem. Int. Ed., 52, 1432, 10.1002/anie.201207163 Jin, 2019, Chem, 5, 1632, 10.1016/j.chempr.2019.04.015 Sheng, 2019, ChemCatChem, 11, 2313, 10.1002/cctc.201900058 Chen, 2018, Chem. Rev., 118, 6409, 10.1021/acs.chemrev.7b00727 Wang, 2019, J. Dyn. Diff. Equat., 31, 2109, 10.1007/s10884-018-9671-1 Huang, 2015, Angew. Chem. Int. Ed., 54, 8704, 10.1002/anie.201503902 Qiao, 2017, J. Am. Chem. Soc., 139, 3934, 10.1021/jacs.6b12530 Zhong, 2019, J. Am. Chem. Soc., 141, 7615, 10.1021/jacs.9b02997 Wang, 2019, Coord. Chem. Rev., 378, 237, 10.1016/j.ccr.2017.12.009 Chen, 2020, Appl Catal B, 262 Lu, 2019, Appl Catal B, 254, 624, 10.1016/j.apcatb.2019.05.033 Kojima, 2008, Angew. Chem. Int. Ed., 47, 6712, 10.1002/anie.200802601 Jana, 2018, Chem. Soc. Rev., 47, 5614, 10.1039/C8CS00035B Lu, 2019, Angew. Chem. Int. Ed., 58, 12392, 10.1002/anie.201906890 Liu, 2019, J. Am. Chem. Soc., 141, 17431, 10.1021/jacs.9b09502 Kumar, 2020, Chem. Eng. J., 391, 10.1016/j.cej.2019.123496 Li, 2016, J. Mater. Chem. A, 4, 12402, 10.1039/C6TA04711D He, 2021, Chin. J. Catal., 42, 123, 10.1016/S1872-2067(20)63603-8 Zhang, 2019, J. Mater. Chem. A, 7, 16364, 10.1039/C9TA03649K Jin, 2018, Chem. Rev., 118, 6337, 10.1021/acs.chemrev.7b00689 Shah, 2021, ACS Appl Mater Interfaces, 13, 23191, 10.1021/acsami.1c03477 Najam, 2018, Angew. Chem., Int. Ed., 57, 15101, 10.1002/anie.201808383 Najam, 2020, Carbon, 164, 12, 10.1016/j.carbon.2020.03.036 Shah, 2022, Chem. Rec., 22, e202100280, 10.1002/tcr.202100280 Shah, 2018, Chemistry (Weinheim an der Bergstrasse, Germany), 24, 10630 Liu, 2022, Electrochim. Acta, 424, 10.1016/j.electacta.2022.140671 Najam, 2019, Electrochim. Acta, 327, 10.1016/j.electacta.2019.134939 Ahmad Shah, 2018, Electrochim. Acta, 272, 169, 10.1016/j.electacta.2018.04.008 Shah, 2017, Electrochim. Acta, 251, 498, 10.1016/j.electacta.2017.08.091 Stamenkovic, 2016, Nat. Mater., 16, 57, 10.1038/nmat4738 Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A Yang, 2016, ACS Appl. Mater. Interfaces, 8, 5366, 10.1021/acsami.5b12370 Xu, 2018, J. Am. Chem. Soc., 140, 7429, 10.1021/jacs.8b03814 Duhović, 2015, Chem. Mater., 27, 5487, 10.1021/acs.chemmater.5b02358 Dogru, 2013, Angew. Chem. Int. Ed., 52, 2920, 10.1002/anie.201208514 Li, 2019, J. Am. Chem. Soc., 141, 13324, 10.1021/jacs.9b06908 Zhao, 2022, Small (Weinheim an der Bergstrasse Germany), 18, 2107750, 10.1002/smll.202107750 Najam, 2022, Covalent Organic Framework-Based Electrocatalysts for CO2 Reduction Reaction, Noble Metal-Free Electrocatalysts: Fundamentals and Recent Advances in Electrocatalysts for Energy Applications, vol. 1, 257 Neti, 2013, CrstEngComm, 15, 7157, 10.1039/c3ce41091a Dalapati, 2016, J. Am. Chem. Soc., 138, 5797, 10.1021/jacs.6b02700 Bertrand, 2013, Proc. Natl. Acad. Sci., 110, 4923, 10.1073/pnas.1221824110 Bhunia, 2017, ACS Appl. Mater. Interfaces, 9, 23843, 10.1021/acsami.7b06968 Yang, 2019, ACS Energy Lett., 4, 2251, 10.1021/acsenergylett.9b01691 Diercks, 2018, J. Am. Chem. Soc., 140, 1116, 10.1021/jacs.7b11940 Zhao, 2019, J. Am. Chem. Soc., 141, 6623, 10.1021/jacs.9b01226 Öztürk, 2020, Beilstein J. Nanotechnol., 11, 770, 10.3762/bjnano.11.62 Liu, 2021, J. Hazard. Mater., 403 Gan, 2021, Chem. Eng. J., 415, 10.1016/j.cej.2020.127850 Kato, 2020, ACS Appl. Mater. Interfaces, 12, 29376, 10.1021/acsami.0c16059 Schmid, 2001, Nature, 409, 258, 10.1038/35051736 Mohamad, 2015, Biotechnol. Biotechnol. Equip., 29, 205, 10.1080/13102818.2015.1008192 Wang, 2018, TrAC, Trends Anal. Chem., 105, 218, 10.1016/j.trac.2018.05.012 Wang, 2018, ACS Appl. Bio Mater., 1, 382, 10.1021/acsabm.8b00104 Mateo, 2007, Enzyme Microb. Technol., 40, 1451, 10.1016/j.enzmictec.2007.01.018 Rodrigues, 2013, Chem. Soc. Rev., 42, 6290, 10.1039/C2CS35231A Vinu, 2004, Chem. Mater., 16, 3056, 10.1021/cm049718u Sun, 2018, J. Am. Chem. Soc., 140, 984, 10.1021/jacs.7b10642 Zhao, 2022, ACS Appl. Mater. Interfaces, 14, 2881, 10.1021/acsami.1c21264 Wang, 2021, ACS Appl. Mater. Interfaces, 13, 56752, 10.1021/acsami.1c13408 Gao, 2007, Nat. Nanotechnol., 2, 577, 10.1038/nnano.2007.260 Wang, 2012, ChemPhysChem, 13, 1199, 10.1002/cphc.201100906 Lin, 2014, Adv. Mater., 26, 4200, 10.1002/adma.201400238 Song, 2010, Adv. Mater., 22, 2206, 10.1002/adma.200903783 Ai, 2013, Eur. J., 19, 15105, 10.1002/chem.201303051 He, 2017, Microchem. J., 135, 91, 10.1016/j.microc.2017.08.009 Wang, 2019, Coord. Chem. Rev., 378, 188, 10.1016/j.ccr.2017.08.023 Wang, 2014, Chem. Mater., 26, 1639, 10.1021/cm403860t Guo, 2021, ACS Sustain. Chem. Eng., 9, 5412, 10.1021/acssuschemeng.1c00419 Li, 2019, Talanta, 204, 224, 10.1016/j.talanta.2019.05.086 Xiong, 2017, Eur. J., 23, 11037, 10.1002/chem.201701513 Su, 2018, Nanoscale, 10, 20120, 10.1039/C8NR06907G Ma, 2018, Microchim. Acta, 185, 546, 10.1007/s00604-018-3079-9 Cui, 2019, ACS Sustain. Chem. Eng., 7, 9408, 10.1021/acssuschemeng.9b00613 Su, 2018, Anal. Methods, 10, 4320, 10.1039/C8AY01386A Sun, 2019, Adv. Mater., 31, 1900008, 10.1002/adma.201900008 Samui, 2020, Microporous Mesoporous Mater., 291, 10.1016/j.micromeso.2019.109700 Wang, 2017, Anal. Bioanal. Chem., 409, 2179, 10.1007/s00216-016-0163-z Zhang, 2018, Angew. Chem. Int. Ed., 57, 16754, 10.1002/anie.201810571