Covalent Organic Frameworks (COFs) for heterogeneous catalysis: Recent trends in design and synthesis with structure-activity relationship
Tài liệu tham khảo
Tao, 2006, Chem. Rev., 106, 896, 10.1021/cr040204o
2012, Chem. Rev., 112, 673, 10.1021/cr300014x
Natarajan, 2009, Chem. Soc. Rev., 38, 2304, 10.1039/b815106g
Li, 2019, EnergyChem, 1
Shah, 2020, Appl Catal B, 268, 10.1016/j.apcatb.2019.118570
Najam, 2022, Chem. Rec., 22, e202100329, 10.1002/tcr.202100329
Shah, 2022, Chem. Catal., 2, 3, 10.1016/j.checat.2021.12.016
Shah, 2021, Small Struct., 3, 2100090, 10.1002/sstr.202100090
Côté Adrien, 2005, Science, 310, 1166, 10.1126/science.1120411
Feng, 2012, Chem. Soc. Rev, 41, 6010, 10.1039/c2cs35157a
Waller, 2015, Acc. Chem. Res., 48, 3053, 10.1021/acs.accounts.5b00369
Kandambeth, 2012, J. Am. Chem. Soc., 134, 19524, 10.1021/ja308278w
Qian, 2020, J. Am. Chem. Soc., 142, 20763, 10.1021/jacs.0c09727
Yusran, 2019, Natl. Sci. Rev., 7, 170, 10.1093/nsr/nwz122
Yusran, 2020, EnergyChem., 2, 10.1016/j.enchem.2020.100035
Hasija, 2022, Coord, Chem. Rev., 452
Segura, 2019, Chem. Soc. Rev., 48, 3903, 10.1039/C8CS00978C
Kandambeth, 2021, Adv. Energy Mater., n/a, 2100177
Zhao, 2021, Chem. Soc. Rev., 50, 6871, 10.1039/D0CS01569E
Wei, 2021, ACS Nano, 15, 12741, 10.1021/acsnano.1c05497
Sun, 2020, Adv. Energy Mater., 10, 1904199, 10.1002/aenm.201904199
Spitler, 2011, Chem. Sci., 2, 1588, 10.1039/C1SC00260K
Spitler, 2010, Nat. Chem., 2, 672, 10.1038/nchem.695
Dogru, 2013, CrstEngComm., 15, 1500, 10.1039/c2ce26343b
Jin, 2013, Chem. Soc. Rev, 42, 6634, 10.1039/c3cs60044k
Beaudoin, 2013, Nat. Chem., 5, 830, 10.1038/nchem.1730
Zhu, 2017, Molecules, 22, 1149, 10.3390/molecules22071149
Zhao, 2017, J. Am. Chem. Soc., 139, 13166, 10.1021/jacs.7b07457
Huang, 2016, Nat. Rev. Mater., 1, 16068, 10.1038/natrevmats.2016.68
Smith, 2015, Chem. Commun., 51, 7532, 10.1039/C5CC00379B
Du, 2016, Angew. Chem. Int. Ed., 55, 1737, 10.1002/anie.201509014
Hunt, 2008, J. Am. Chem. Soc., 130, 11872, 10.1021/ja805064f
Lanni, 2011, J. Am. Chem. Soc., 133, 13975, 10.1021/ja203807h
Uribe-Romo, 2011, J. Am. Chem. Soc., 133, 11478, 10.1021/ja204728y
Fang, 2014, Nat. Commun., 5, 4503, 10.1038/ncomms5503
Fang, 2015, J. Am. Chem. Soc., 137, 8352, 10.1021/jacs.5b04147
Kandambeth, 2013, Angew. Chem. Int. Ed., 52, 13052, 10.1002/anie.201306775
Kandambeth, 2015, Nat. Commun., 6, 6786, 10.1038/ncomms7786
Li, 2017, J. Am. Chem. Soc., 139, 6042, 10.1021/jacs.7b01523
Chen, 2015, J. Am. Chem. Soc., 137, 3241, 10.1021/ja509602c
Xu, 2015, Nat. Chem., 7, 905, 10.1038/nchem.2352
Waller, 2016, J. Am. Chem. Soc., 138, 15519, 10.1021/jacs.6b08377
Li, 2016, Chem. Commun., 52, 7217, 10.1039/C6CC00947F
Chandra, 2013, J. Am. Chem. Soc., 135, 17853, 10.1021/ja408121p
Chandra, 2014, J. Am. Chem. Soc., 136, 6570, 10.1021/ja502212v
Dalapati, 2013, J. Am. Chem. Soc., 135, 17310, 10.1021/ja4103293
Guo, 2013, Nat. Commun., 4, 2736, 10.1038/ncomms3736
Nagai, 2013, Angew. Chem. Int. Ed., 52, 3770, 10.1002/anie.201300256
Das, 2017, J. Am. Chem. Soc., 139, 9558, 10.1021/jacs.7b02836
Chen, 2015, Sci. Rep., 5, 14650, 10.1038/srep14650
Zeng, 2015, J. Am. Chem. Soc., 137, 1020, 10.1021/ja510926w
Faury, 2012, J. Phys. Chem. C, 116, 4819, 10.1021/jp300417g
Hu, 2022, Chem. Mater., 34, 5249, 10.1021/acs.chemmater.2c00922
Liu, 2020, J. Am. Chem. Soc., 142, 20956, 10.1021/jacs.0c10919
Geng, 2020, Chem. Rev., 120, 8814, 10.1021/acs.chemrev.9b00550
Ibenskas, 2022, J. Phys. Chem. C, 126, 8079, 10.1021/acs.jpcc.2c00805
Zhu, 2017, Molecules, 22
Zeng, 2016, Adv. Mater., 28, 2855, 10.1002/adma.201505004
Kamiya, 2014, Nat. Commun., 5, 5040, 10.1038/ncomms6040
Lin, 2015, Science, 349, 1208, 10.1126/science.aac8343
Mitra, 2017, J. Am. Chem. Soc., 139, 4513, 10.1021/jacs.7b00925
Ding, 2013, Chem. Soc. Rev., 42, 548, 10.1039/C2CS35072F
Liu, 2021, Chem. Soc. Rev, 50, 120, 10.1039/D0CS00620C
Côté, 2007, J. Am. Chem. Soc., 129, 12914, 10.1021/ja0751781
Kuhn, 2008, Angew. Chem. Int. Ed., 47, 3450, 10.1002/anie.200705710
Feng, 2011, Chem. Commun., 47, 1979, 10.1039/c0cc04386a
Ding, 2011, Angew. Chem. Int. Ed., 50, 1289, 10.1002/anie.201005919
Chen, 2013, J. Am. Chem. Soc., 135, 546, 10.1021/ja3100319
Dalapati, 2015, Nat. Commun., 6, 7786, 10.1038/ncomms8786
Yu, 2016, Polym. Chem., 7, 3392, 10.1039/C6PY00281A
Spitler, 2012, Angew. Chem. Int. Ed., 51, 2623, 10.1002/anie.201107070
Tilford, 2008, Adv. Mater., 20, 2741, 10.1002/adma.200800030
Nagai, 2011, Nat. Commun., 2, 536, 10.1038/ncomms1542
Zhou, 2014, J. Am. Chem. Soc., 136, 15885, 10.1021/ja5092936
Tian, 2016, Chem. Commun., 52, 11704, 10.1039/C6CC06637B
Pang, 2017, Chem. Sci., 8, 3866, 10.1039/C6SC05673C
Pang, 2016, J. Am. Chem. Soc., 138, 4710, 10.1021/jacs.6b01244
Yin, 2017, Chem. Commun., 53, 7266, 10.1039/C7CC01045A
Ascherl, 2016, Nat. Chem., 8, 310, 10.1038/nchem.2444
Baldwin, 2015, Chem. Mater., 27, 6169, 10.1021/acs.chemmater.5b02053
Mo, 2017, ACS Nano, 11, 11694, 10.1021/acsnano.7b06871
Zhao, 2017, Nanomaterials (Basel), 8, 15, 10.3390/nano8010015
Bisbey, 2017, ACS Cent. Sci., 3, 533, 10.1021/acscentsci.7b00127
Colson John, 2011, Science, 332, 228, 10.1126/science.1202747
Zwaneveld, 2008, J. Am. Chem. Soc., 130, 6678, 10.1021/ja800906f
Sahabudeen, 2016, Nat. Commun., 7, 13461, 10.1038/ncomms13461
Feldblyum, 2015, Chem. Commun., 51, 13894, 10.1039/C5CC04679C
Cai, 2014, Chem. Sci., 5, 4693, 10.1039/C4SC02593H
Dai, 2016, Angew. Chem. Int. Ed., 55, 213, 10.1002/anie.201508473
Das, 2015, Chem. Sci., 6, 3931, 10.1039/C5SC00512D
Berlanga, 2011, Small, 7, 1207, 10.1002/smll.201002264
Bunck, 2013, J. Am. Chem. Soc., 135, 14952, 10.1021/ja408243n
Li, 2017, ACS Appl. Mater. Interfaces, 9, 8433, 10.1021/acsami.6b15752
Mitra, 2016, J. Am. Chem. Soc., 138, 2823, 10.1021/jacs.5b13533
Wan, 2008, Angew. Chem. Int. Ed., 47, 8826, 10.1002/anie.200803826
Huang, 2013, ACS Appl. Mater. Interfaces, 5, 8845, 10.1021/am402649g
Jiang, 2014, J. Mater. Chem. A, 2, 8201, 10.1039/c4ta00555d
Pan, 2016, Macromol. Res., 24, 366, 10.1007/s13233-016-4039-z
Halder, 2016, Angew. Chem. Int. Ed., 55, 7806, 10.1002/anie.201600087
Kim, 2017, Adv. Funct. Mater., 27, 1700925, 10.1002/adfm.201700925
Liu, 2016, Science, 351, 365, 10.1126/science.aad4011
Smith, 2017, ACS Cent. Sci., 3, 58, 10.1021/acscentsci.6b00331
Yang, 2015, Chem. Commun., 51, 12254, 10.1039/C5CC03413B
Tan, 2016, Angew. Chem. Int. Ed., 55, 13979, 10.1002/anie.201606155
Lin, 2017, Chem. Commun., 53, 3649, 10.1039/C7CC00482F
Zheng, 2017, Chem. Mater., 29, 2374, 10.1021/acs.chemmater.7b00228
Xu, 2017, Chem. Commun., 53, 11690, 10.1039/C7CC07002K
Thompson, 2017, J. Am. Chem. Soc., 139, 10506, 10.1021/jacs.7b05555
Wan, 2011, Chem. Mater., 23, 4094, 10.1021/cm201140r
Jin, 2013, Angew. Chem. Int. Ed., 52, 2017, 10.1002/anie.201209513
Xu, 2014, Chem. Commun., 50, 1292, 10.1039/C3CC48813F
Huang, 2015, J. Am. Chem. Soc., 137, 7079, 10.1021/jacs.5b04300
Ding, 2011, J. Am. Chem. Soc., 133, 19816, 10.1021/ja206846p
Cao, 2009, Angew. Chem. Int. Ed., 48, 4730, 10.1002/anie.200900960
Liao, 2014, J. Mater. Chem. A, 2, 8854, 10.1039/C4TA00523F
Wan, 2009, Angew. Chem. Int. Ed., 48, 5439, 10.1002/anie.200900881
Tanaka, 2015, Chem. Soc. Rev., 44, 943, 10.1039/C3CS60443H
Feng, 2012, Angew. Chem. Int. Ed., 51, 2618, 10.1002/anie.201106203
Lin, 2017, J. Am. Chem. Soc., 139, 8705, 10.1021/jacs.7b04141
Gottfried, 2015, Surf. Sci. Rep., 70, 259, 10.1016/j.surfrep.2015.04.001
Ding, 2012, Chem. Commun., 48, 8952, 10.1039/c2cc33929c
Jin, 2015, J. Am. Chem. Soc., 137, 7817, 10.1021/jacs.5b03553
Jin, 2014, Eur. J., 20, 14608, 10.1002/chem.201402844
Ding, 2014, Eur. J., 20, 14614, 10.1002/chem.201405330
Chandra, 2017, Chem. Mater., 29, 2074, 10.1021/acs.chemmater.6b04178
Feng, 2017, Chem. Commun., 53, 11334, 10.1039/C7CC07024A
Wang, 2017, J. Am. Chem. Soc., 139, 4258, 10.1021/jacs.7b02648
Keller, 2017, J. Am. Chem. Soc., 139, 8194, 10.1021/jacs.7b01631
Khattak, 2016, J. Mater. Chem. A, 4, 16312, 10.1039/C6TA05784E
Doonan, 2010, Nat. Chem., 2, 235, 10.1038/nchem.548
Huang, 2017, Angew. Chem. Int. Ed., 56, 4982, 10.1002/anie.201611542
Zhai, 2017, Chem. Commun., 53, 4242, 10.1039/C7CC01921A
Ning, 2017, J. Am. Chem. Soc., 139, 8897, 10.1021/jacs.7b02696
Chen, 2014, J. Am. Chem. Soc., 136, 9806, 10.1021/ja502692w
Xu, 2015, Angew. Chem. Int. Ed., 54, 6814, 10.1002/anie.201501706
Fan, 2017, Eur. J., 23, 5668, 10.1002/chem.201700915
Zhang, 2017, J. Am. Chem. Soc., 139, 8277, 10.1021/jacs.7b03352
Bunck, 2012, Angew. Chem. Int. Ed., 51, 1885, 10.1002/anie.201108462
Bunck, 2013, Chem. Commun., 49, 2457, 10.1039/c3cc40358k
El-Kaderi Hani, 2007, Science, 316, 268, 10.1126/science.1139915
Calik, 2016, J. Am. Chem. Soc., 138, 1234, 10.1021/jacs.5b10708
Sun, 2017, J. Am. Chem. Soc., 139, 2786, 10.1021/jacs.6b12885
Ding, 2016, J. Am. Chem. Soc., 138, 3031, 10.1021/jacs.5b10754
Huang, 2017, J. Am. Chem. Soc., 139, 2428, 10.1021/jacs.6b12328
Merí-Bofí, 2017, J. Mater. Chem. A, 5, 17973, 10.1039/C7TA05588A
Mendoza-Cortés, 2012, Chem. A Eur. J., 116, 1621
Han, 2017, J. Am. Chem. Soc., 139, 8693, 10.1021/jacs.7b04008
Chen, 2014, Chem. Commun., 50, 6161, 10.1039/C4CC01825G
Zhang, 2014, RSC Adv., 4, 51544, 10.1039/C4RA09304F
Aiyappa, 2016, Chem. Mater., 28, 4375, 10.1021/acs.chemmater.6b01370
Yamaguchi, 2017, Chem. Commun., 53, 10437, 10.1039/C7CC05841A
Pachfule, 2014, Chem. Commun., 50, 3169, 10.1039/C3CC49176E
Bhadra, 2017, ACS Appl. Mater. Interfaces, 9, 13785, 10.1021/acsami.7b02355
Thote, 2014, Eur. J., 20, 15961, 10.1002/chem.201403800
Banerjee, 2017, J. Am. Chem. Soc., 139, 16228, 10.1021/jacs.7b07489
Li, 2017, Chem. Sci., 8, 781, 10.1039/C6SC02456D
Ma, 2017, Chem. Mater., 29, 6518, 10.1021/acs.chemmater.7b02131
Baldwin, 2016, J. Am. Chem. Soc., 138, 15134, 10.1021/jacs.6b10316
Ghazi, 2016, Adv. Energy Mater., 6, 1601250, 10.1002/aenm.201601250
Mulzer, 2016, ACS Cent. Sci., 2, 667, 10.1021/acscentsci.6b00220
Xu, 2016, ACS Cent. Sci., 2, 586, 10.1021/acscentsci.6b00264
Chandra, 2016, Chem. Mater., 28, 1489, 10.1021/acs.chemmater.5b04947
Shinde, 2016, J. Mater. Chem. A, 4, 2682, 10.1039/C5TA10521H
Ma, 2016, J. Am. Chem. Soc., 138, 5897, 10.1021/jacs.5b13490
Montoro, 2017, J. Am. Chem. Soc., 139, 10079, 10.1021/jacs.7b05182
Gao, 2016, Chem. Commun., 52, 1498, 10.1039/C5CC09225F
Sakaushi, 2015, Acc. Chem. Res., 48, 1591, 10.1021/acs.accounts.5b00010
Yang, 2022, Chem. Soc. Rev.
Wei, 2018, J. Am. Chem. Soc., 140, 4623, 10.1021/jacs.8b00571
Bojdys, 2010, Adv. Mater., 22, 2202, 10.1002/adma.200903436
Huang, 2019, Angew. Chem. Int. Ed., 58, 8676, 10.1002/anie.201900046
Huang, 2018, Angew. Chem. Int. Ed., 57, 8316, 10.1002/anie.201801112
Ghosh, 2015, Nat. Mater., 14, 505, 10.1038/nmat4220
Planells, 2013, J. Mater. Chem. A, 1, 6949, 10.1039/c3ta11417a
Pachfule, 2018, J. Am. Chem. Soc., 140, 1423, 10.1021/jacs.7b11255
Li, 2016, J. Am. Chem. Soc., 138, 14783, 10.1021/jacs.6b09563
Liu, 2018, Chem, 4, 1696, 10.1016/j.chempr.2018.05.003
Peng, 2015, ChemSusChem, 8, 3208, 10.1002/cssc.201500755
Shinde, 2015, Chem. Commun., 51, 310, 10.1039/C4CC07104B
Xu, 2016, J. Am. Chem. Soc., 138, 11489, 10.1021/jacs.6b07516
Han, 2020, Chem. Soc. Rev, 49, 6248, 10.1039/D0CS00009D
Wang, 2019, Angew. Chem. Int. Ed., 58, 9443, 10.1002/anie.201903534
Li, 2018, Chem. Rev., 118, 3752, 10.1021/acs.chemrev.7b00653
Zhang, 2019, ACS Sustain. Chem. Eng., 7, 5065, 10.1021/acssuschemeng.8b05887
Liang, 2021, Adv. Mater., 33, 2105647, 10.1002/adma.202105647
Ding, 2019, J. Mater. Chem. A, 7, 4689, 10.1039/C8TA12046C
Mu, 2018, ACS Appl. Mater. Interfaces, 10, 41350, 10.1021/acsami.8b14671
Lohse, 2018, Adv. Funct. Mater., 28, 1705553, 10.1002/adfm.201705553
Furukawa, 2013, Science, 341, 1230444, 10.1126/science.1230444
Yang, 2018, J. Am. Chem. Soc., 140, 14614, 10.1021/jacs.8b09705
Frediani, 2007, J. Mol. Catal. A: Chem., 271, 80, 10.1016/j.molcata.2007.02.030
Leng, 2016, Eur. J., 22, 9087, 10.1002/chem.201601334
Yan, 2019, J. Am. Chem. Soc., 141, 2920, 10.1021/jacs.9b00485
Gonçalves, 2016, ChemCatChem, 8, 743, 10.1002/cctc.201500926
Kaleeswaran, 2017, ChemPlusChem, 82, 1253, 10.1002/cplu.201700342
McCaffrey, 2014, J. Am. Chem. Soc., 136, 1782, 10.1021/ja412606t
Lu, 2017, J. Am. Chem. Soc., 139, 17082, 10.1021/jacs.7b07918
Chen, 2018, Inorg. Chem., 57, 2678, 10.1021/acs.inorgchem.7b03077
Huang, 2022, Chem. Eng. J., 427
Yan, 2018, J. Mater. Chem. A, 6, 8793, 10.1039/C8TA01940A
Dong, 2020, Angew. Chem. Int. Ed., 59, 13722, 10.1002/anie.202004796
Li, 2020, Energy Storage Mater., 31, 115, 10.1016/j.ensm.2020.06.005
Yan, 2018, J. Mater. Chem. A, 6, 15905, 10.1039/C8TA05985C
An, 2021, Energy Storage Mater., 41, 354, 10.1016/j.ensm.2021.06.010
You, 2021, J. Clean. Prod., 291, 10.1016/j.jclepro.2021.125822
Shao, 2021, J. Energy Chem., 63, 54, 10.1016/j.jechem.2021.04.041
Kou, 2021, Appl Catal B, 291, 10.1016/j.apcatb.2021.120146
Dong, 2021, Chem. Eng. J., 403, 10.1016/j.cej.2020.126383
Yi, 2019, J. Mater. Chem. A, 7, 1252, 10.1039/C8TA09490J
Zhang, 2021, Appl. Surf. Sci., 563
Wang, 2020, J. Phys. Chem. C, 124, 17675, 10.1021/acs.jpcc.0c04360
Tian, 2019, J. Phys. Chem. C, 123, 22114, 10.1021/acs.jpcc.9b02547
Li, 2020, Sci. Adv., 6
Huang, 2020, ACS Catal., 10, 6579, 10.1021/acscatal.0c01459
Liu, 2021, The Innovation, 2
Chen, 2020, Angew. Chem. Int. Ed., 59, 5050, 10.1002/anie.201904291
Cheng, 2018, Chem. Commun., 54, 13563, 10.1039/C8CC07784C
Gao, 2015, Microporous Mesoporous Mater., 213, 59, 10.1016/j.micromeso.2015.04.009
George, 1995, Chem. Rev., 95, 475, 10.1021/cr00035a001
Wu, 2015, Chem. Commun., 51, 10096, 10.1039/C5CC03457D
Lun, 2011, J. Am. Chem. Soc., 133, 5806, 10.1021/ja202223d
Wang, 2012, Eur. J., 18, 6718, 10.1002/chem.201200753
Banerjee, 2009, J. Am. Chem. Soc., 131, 7524, 10.1021/ja901440g
Alamillo, 2013, Angew. Chem. Int. Ed., 52, 10349, 10.1002/anie.201304693
Tong, 2010, ChemSusChem, 3, 350, 10.1002/cssc.200900224
Liu, 2013, Green Chem., 15, 2895, 10.1039/c3gc41139g
Gao, 2015, ACS Catal., 5, 6648, 10.1021/acscatal.5b01874
Llabrés i Xamena, 2007, J. Catal., 250, 294, 10.1016/j.jcat.2007.06.004
Hou, 2015, Microporous Mesoporous Mater., 214, 108, 10.1016/j.micromeso.2015.05.002
Heintz, 2019, ChemCatChem, 11, 4286, 10.1002/cctc.201900894
Puthiaraj, 2019, Mol. Catal., 473
Mu, 2017, ACS Appl. Mater. Interfaces, 9, 22856, 10.1021/acsami.7b05870
Vardhan, 2019, ACS Sustain. Chem. Eng., 7, 4878, 10.1021/acssuschemeng.8b05373
Maia, 2020, European Journal, 26, 2051, 10.1002/chem.201904845
Cifuentes, 2018, Top. Catal., 61, 689, 10.1007/s11244-018-0910-9
Li, 2019, J. Mater. Chem. A, 7, 5482, 10.1039/C8TA11058A
Ma, 2019, Dalton Trans., 48, 7352, 10.1039/C8DT05056B
Leng, 2016, RSC Adv., 6, 37403, 10.1039/C6RA05304A
Chen, 2014, Green Chem., 16, 3978, 10.1039/C4GC00314D
Zhang, 2015, Appl. Catal. A, 489, 117, 10.1016/j.apcata.2014.10.023
Brown, 2015, Catal. Commun., 59, 50, 10.1016/j.catcom.2014.09.040
Hervés, 2012, Chem. Soc. Rev., 41, 5577, 10.1039/c2cs35029g
Phan, 2006, Adv. Synth. Catal., 348, 609, 10.1002/adsc.200505473
Niu, 2010, ACS Nano, 4, 1987, 10.1021/nn100093y
Akermark, 1975, J. Org. Chem., 40, 1365, 10.1021/jo00897a048
Pachfule, 2014, J. Mater. Chem. A, 2, 7944, 10.1039/C4TA00284A
Kamiya, 2014, Nat. Commun., 5, 10.1038/ncomms6040
Mullangi, 2015, Sci. Rep., 5, 10876, 10.1038/srep10876
Zahmakıran, 2010, J. Am. Chem. Soc., 132, 6541, 10.1021/ja101602d
Kang, 2009, Angew. Chem. Int. Ed., 48, 2565, 10.1002/anie.200805715
Patial, 2021, Environ. Res., 197, 10.1016/j.envres.2021.111134
Bu, 2021, Mol. Catal., 499
Cao, 2021, Appl Catal B, 294, 10.1016/j.apcatb.2021.120238
Mullangi, 2018, Small, 14, 1801233, 10.1002/smll.201801233
Fagnoni, 2007, Chem. Rev., 107, 2725, 10.1021/cr068352x
Li, 2020, Coord. Chem. Rev., 412, 10.1016/j.ccr.2020.213262
Zhang, 2022, Angew. Chem. Int. Ed., n/a, e202204108
Xiang, 2013, J. Mater. Chem. A, 1, 2691, 10.1039/C2TA00063F
Li, 2021, Matter, 4, 2230, 10.1016/j.matt.2021.03.022
Gong, 2020, J. Am. Chem. Soc., 142, 16723, 10.1021/jacs.0c07206
Yang, 2021, Adv. Mater., 33, 2104002, 10.1002/adma.202104002
Wang, 2021, Angew. Chem. Int. Ed., 60, 9321, 10.1002/anie.202100464
Sarkar, 2021, Chem. Commun., 57, 8550, 10.1039/D1CC02616J
Li, 2021, Small (Weinheim an der Bergstrasse Germany), 17, 2100918, 10.1002/smll.202100918
Martínez-Abadía, 2021, Angew. Chem. Int. Ed., 60, 9941, 10.1002/anie.202100434
Ding, 2011, J. Am. Chem. Soc., 133, 14510, 10.1021/ja2052396
Jin, 2013, Chem. Sci., 4, 4505, 10.1039/c3sc52034j
Furukawa, 2009, J. Am. Chem. Soc., 131, 8875, 10.1021/ja9015765
Stegbauer, 2014, Chem. Sci., 5, 2789, 10.1039/C4SC00016A
Liu, 2017, Natl. Sci. Rev., 4, 359, 10.1093/nsr/nwx039
Biswal, 2019, J. Am. Chem. Soc., 141, 11082, 10.1021/jacs.9b03243
Ebrahimi, 2017, Nature, 542, 423, 10.1038/nature21503
Chen, 2019, Angew. Chem. Int. Ed., 58, 6430, 10.1002/anie.201902543
Jin, 2017, Science, 357, 673, 10.1126/science.aan0202
Zhao, 2019, Angew. Chem. Int. Ed., 58, 5376, 10.1002/anie.201901194
Bi, 2019, Nat. Commun., 10, 10.1038/s41467-019-10504-6
Yadav, 2016, J. Mater. Chem. A, 4, 9413, 10.1039/C6TA01625A
Jiménez-Almarza, 2019, ChemCatChem, 11, 4916, 10.1002/cctc.201901061
Hao, 2019, Chem. Mater., 31, 8100, 10.1021/acs.chemmater.9b02718
Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175
Quint, 2016, J. Am. Chem. Soc., 138, 7436, 10.1021/jacs.6b04069
Vyas, 2015, Nat. Commun., 6, 10.1038/ncomms9508
Butchosa, 2014, J. Phys. Chem. C, 118, 4314, 10.1021/jp411854f
Stegbauer, 2018, Adv. Energy Mater., 8, 1703278, 10.1002/aenm.201703278
Bhadra, 2019, J. Am. Chem. Soc., 141, 6152, 10.1021/jacs.9b01891
Ohara, 2010, Angew. Chem. Int. Ed., 49, 5507, 10.1002/anie.201001902
Wang, 2018, Nat. Chem., 10, 1180, 10.1038/s41557-018-0141-5
Yang, 2016, Angew. Chem. Int. Ed., 55, 9202, 10.1002/anie.201603532
Chen, 2019, J. Mater. Chem. A, 7, 998, 10.1039/C8TA10046B
Feng, 2012, Adv. Mater., 24, 3026, 10.1002/adma.201201185
Zhang, 2013, Angew. Chem. Int. Ed., 52, 1432, 10.1002/anie.201207163
Jin, 2019, Chem, 5, 1632, 10.1016/j.chempr.2019.04.015
Sheng, 2019, ChemCatChem, 11, 2313, 10.1002/cctc.201900058
Chen, 2018, Chem. Rev., 118, 6409, 10.1021/acs.chemrev.7b00727
Wang, 2019, J. Dyn. Diff. Equat., 31, 2109, 10.1007/s10884-018-9671-1
Huang, 2015, Angew. Chem. Int. Ed., 54, 8704, 10.1002/anie.201503902
Qiao, 2017, J. Am. Chem. Soc., 139, 3934, 10.1021/jacs.6b12530
Zhong, 2019, J. Am. Chem. Soc., 141, 7615, 10.1021/jacs.9b02997
Wang, 2019, Coord. Chem. Rev., 378, 237, 10.1016/j.ccr.2017.12.009
Chen, 2020, Appl Catal B, 262
Lu, 2019, Appl Catal B, 254, 624, 10.1016/j.apcatb.2019.05.033
Kojima, 2008, Angew. Chem. Int. Ed., 47, 6712, 10.1002/anie.200802601
Jana, 2018, Chem. Soc. Rev., 47, 5614, 10.1039/C8CS00035B
Lu, 2019, Angew. Chem. Int. Ed., 58, 12392, 10.1002/anie.201906890
Liu, 2019, J. Am. Chem. Soc., 141, 17431, 10.1021/jacs.9b09502
Kumar, 2020, Chem. Eng. J., 391, 10.1016/j.cej.2019.123496
Li, 2016, J. Mater. Chem. A, 4, 12402, 10.1039/C6TA04711D
He, 2021, Chin. J. Catal., 42, 123, 10.1016/S1872-2067(20)63603-8
Zhang, 2019, J. Mater. Chem. A, 7, 16364, 10.1039/C9TA03649K
Jin, 2018, Chem. Rev., 118, 6337, 10.1021/acs.chemrev.7b00689
Shah, 2021, ACS Appl Mater Interfaces, 13, 23191, 10.1021/acsami.1c03477
Najam, 2018, Angew. Chem., Int. Ed., 57, 15101, 10.1002/anie.201808383
Najam, 2020, Carbon, 164, 12, 10.1016/j.carbon.2020.03.036
Shah, 2022, Chem. Rec., 22, e202100280, 10.1002/tcr.202100280
Shah, 2018, Chemistry (Weinheim an der Bergstrasse, Germany), 24, 10630
Liu, 2022, Electrochim. Acta, 424, 10.1016/j.electacta.2022.140671
Najam, 2019, Electrochim. Acta, 327, 10.1016/j.electacta.2019.134939
Ahmad Shah, 2018, Electrochim. Acta, 272, 169, 10.1016/j.electacta.2018.04.008
Shah, 2017, Electrochim. Acta, 251, 498, 10.1016/j.electacta.2017.08.091
Stamenkovic, 2016, Nat. Mater., 16, 57, 10.1038/nmat4738
Suen, 2017, Chem. Soc. Rev., 46, 337, 10.1039/C6CS00328A
Yang, 2016, ACS Appl. Mater. Interfaces, 8, 5366, 10.1021/acsami.5b12370
Xu, 2018, J. Am. Chem. Soc., 140, 7429, 10.1021/jacs.8b03814
Duhović, 2015, Chem. Mater., 27, 5487, 10.1021/acs.chemmater.5b02358
Dogru, 2013, Angew. Chem. Int. Ed., 52, 2920, 10.1002/anie.201208514
Li, 2019, J. Am. Chem. Soc., 141, 13324, 10.1021/jacs.9b06908
Zhao, 2022, Small (Weinheim an der Bergstrasse Germany), 18, 2107750, 10.1002/smll.202107750
Najam, 2022, Covalent Organic Framework-Based Electrocatalysts for CO2 Reduction Reaction, Noble Metal-Free Electrocatalysts: Fundamentals and Recent Advances in Electrocatalysts for Energy Applications, vol. 1, 257
Neti, 2013, CrstEngComm, 15, 7157, 10.1039/c3ce41091a
Dalapati, 2016, J. Am. Chem. Soc., 138, 5797, 10.1021/jacs.6b02700
Bertrand, 2013, Proc. Natl. Acad. Sci., 110, 4923, 10.1073/pnas.1221824110
Bhunia, 2017, ACS Appl. Mater. Interfaces, 9, 23843, 10.1021/acsami.7b06968
Yang, 2019, ACS Energy Lett., 4, 2251, 10.1021/acsenergylett.9b01691
Diercks, 2018, J. Am. Chem. Soc., 140, 1116, 10.1021/jacs.7b11940
Zhao, 2019, J. Am. Chem. Soc., 141, 6623, 10.1021/jacs.9b01226
Öztürk, 2020, Beilstein J. Nanotechnol., 11, 770, 10.3762/bjnano.11.62
Liu, 2021, J. Hazard. Mater., 403
Gan, 2021, Chem. Eng. J., 415, 10.1016/j.cej.2020.127850
Kato, 2020, ACS Appl. Mater. Interfaces, 12, 29376, 10.1021/acsami.0c16059
Schmid, 2001, Nature, 409, 258, 10.1038/35051736
Mohamad, 2015, Biotechnol. Biotechnol. Equip., 29, 205, 10.1080/13102818.2015.1008192
Wang, 2018, TrAC, Trends Anal. Chem., 105, 218, 10.1016/j.trac.2018.05.012
Wang, 2018, ACS Appl. Bio Mater., 1, 382, 10.1021/acsabm.8b00104
Mateo, 2007, Enzyme Microb. Technol., 40, 1451, 10.1016/j.enzmictec.2007.01.018
Rodrigues, 2013, Chem. Soc. Rev., 42, 6290, 10.1039/C2CS35231A
Vinu, 2004, Chem. Mater., 16, 3056, 10.1021/cm049718u
Sun, 2018, J. Am. Chem. Soc., 140, 984, 10.1021/jacs.7b10642
Zhao, 2022, ACS Appl. Mater. Interfaces, 14, 2881, 10.1021/acsami.1c21264
Wang, 2021, ACS Appl. Mater. Interfaces, 13, 56752, 10.1021/acsami.1c13408
Gao, 2007, Nat. Nanotechnol., 2, 577, 10.1038/nnano.2007.260
Wang, 2012, ChemPhysChem, 13, 1199, 10.1002/cphc.201100906
Lin, 2014, Adv. Mater., 26, 4200, 10.1002/adma.201400238
Song, 2010, Adv. Mater., 22, 2206, 10.1002/adma.200903783
Ai, 2013, Eur. J., 19, 15105, 10.1002/chem.201303051
He, 2017, Microchem. J., 135, 91, 10.1016/j.microc.2017.08.009
Wang, 2019, Coord. Chem. Rev., 378, 188, 10.1016/j.ccr.2017.08.023
Wang, 2014, Chem. Mater., 26, 1639, 10.1021/cm403860t
Guo, 2021, ACS Sustain. Chem. Eng., 9, 5412, 10.1021/acssuschemeng.1c00419
Li, 2019, Talanta, 204, 224, 10.1016/j.talanta.2019.05.086
Xiong, 2017, Eur. J., 23, 11037, 10.1002/chem.201701513
Su, 2018, Nanoscale, 10, 20120, 10.1039/C8NR06907G
Ma, 2018, Microchim. Acta, 185, 546, 10.1007/s00604-018-3079-9
Cui, 2019, ACS Sustain. Chem. Eng., 7, 9408, 10.1021/acssuschemeng.9b00613
Su, 2018, Anal. Methods, 10, 4320, 10.1039/C8AY01386A
Sun, 2019, Adv. Mater., 31, 1900008, 10.1002/adma.201900008
Samui, 2020, Microporous Mesoporous Mater., 291, 10.1016/j.micromeso.2019.109700
Wang, 2017, Anal. Bioanal. Chem., 409, 2179, 10.1007/s00216-016-0163-z
Zhang, 2018, Angew. Chem. Int. Ed., 57, 16754, 10.1002/anie.201810571