Coupling proximal sensing, seasonal forecasts and crop modelling to optimize nitrogen variable rate application in durum wheat

Springer Science and Business Media LLC - Tập 22 Số 1 - Trang 75-98 - 2021
Francesco Morari1, Valentina Zanella1, Stefano Gobbo1, Marco Bindi2, Luigi Sartori3, Massimiliano Pasqui4, Giuliano Mosca1, Roberto Ferrise2
1Department of Agronomy Food Natural Resources Animal and Environment, University of Padua, Legnaro, Italy
2Department of Plant, Soil and Environmental Science, University of Florence, Florence, Italy
3Department of Land Environment Agriculture Forestry, University of Padua, Legnaro, Italy
4CNR–IBIMET, Rome, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnall, D. B., Mallarino, A. P., Ruark, M. D., Varvel, G. E., Solie, J. B., Stone, M. L., et al. (2013). Relationship between grain crop yield potential and nitrogen response. Agronomy Journal, 105(5), 1335–1344.

Asseng, S., Ewert, F., Martre, P., Rötter, R. P., Lobell, D. B., Cammarano, D., et al. (2014). Rising temperatures reduce global wheat production. Nature Climate Change, 5(2), 143–147.

Asseng, S., McIntosh, P. C., Wang, G., & Khimashia, N. (2012). Optimal N fertiliser management based on a seasonal forecast. European Journal of Agronomy, 38, 66–73.

Baigorria, G. A., Jones, J. W., & O’Brien, J. J. (2008). Potential predictability of crop yield using an ensemble climate forecast by a regional circulation model. Agricultural and Forest Meteorology, 148(8–9), 1353–1361.

Bannayan, M., & Hoogenboom, G. (2009). Using pattern recognition for estimating cultivar coefficients of a crop simulation model. Field Crops Research, 111, 290–302.

Basso, B., Dumont, B., Cammarano, D., Pezzuolo, A., Marinello, F., & Sartori, L. (2016). Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Science of The Total Environment, 545–546, 227–235.

Basso, B., & Liu, L. (2019). Seasonal crop yield forecast: Methods, applications, and accuracies. In D. L. Sparks (Ed.), Advances in agronomy (pp. 201–255). Cambridge, MA, USA: Academic Press.

Bauer, P., Thorpe, A., & Brunet, G. (2015). The quiet revolution of numerical weather prediction. Nature, 525(7567), 47–55.

Bertheloot, J., Martre, P., & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148(3), 1707–1720.

Brown, J. N., Hochman, Z., Holzworth, D., & Horan, H. (2018). Seasonal climate forecasts provide more definitive and accurate crop yield predictions. Agricultural and Forest Meteorology, 260–261, 247–254.

Chiericati, M., Morari, F., Sartori, L., Ortiz, B., Perry, C., & Vellidis, G. (2007). Delineating management zones to apply site-specific irrigation in the Venice lagoon watershed. In J. V. Stafford (Ed.), Precision agriculture ’07. Proceedings of the 6th European conference on precision agriculture (pp. 599–605). Wageningen, The Netherlands: Wageningen Academic Publishers.

Chung, B., Girma, K., Raun, W. R., & Solie, J. B. (2010). Changes in response indices as a function of time in winter wheat. Journal of Plant Nutrition, 33(6), 796–808.

Colaço, A. F., & Bramley, R. G. V. (2018). Do crop sensors promote improved nitrogen management in grain crops? Field Crops Research, 218, 126–140.

Crain, J. L., Waldschmidt, K. M., & Raun, W. R. (2013). Small-scale spatial variability in winter wheat production. Communications in Soil Science and Plant Analysis, 44(19), 2830–2838.

Dalla Marta, A., Orlando, F., Mancini, M., Guasconi, F., Motha, R., Qu, J., et al. (2015). A simplified index for an early estimation of durum wheat yield in Tuscany (Central Italy). Field Crops Research, 170, 1–6.

DGR 1150/2011 Programma d’azione per le zone vulnerabili ai nitrati del Veneto (Action Programme for Nitrate Vulnerable Zones in Veneto). Bur n. 61, 16/08/2011, Venezia, (IT): Giunta regionale del Veneto.

Diacono, M., Castrignanò, A., Troccoli, A., De Benedetto, D., Basso, B., & Rubino, P. (2012). Spatial and temporal variability of wheat grain yield and quality in a Mediterranean environment: A multivariate geostatistical approach. Field Crops Research, 131, 49–62.

Dusadeerungsikul, P. O., Liakos, V., Morari, F., Nof, S. Y., & Bechar, A. (2020). Smart action. In A. Castrignanò, G. Buttafuoco, R. Khosla, A. M. Mouazen, D. Moshou, & O. Naud (Eds.), Agricultural Internet of things and decision support for precision smart farming (pp. 225–277). London, UK: Academic Press.

EC-Council Directive, 1991. Council Directive 91/676/EEC Concerning the Protection of Waters Against Pollution Caused by Nitrates from Agricultural Sources.

Erdle, K., Mistele, B., & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research, 124(1), 74–84.

Fang, H., Liang, S., & Hoogenboom, G. (2011). Integration of MODIS LAI and vegetation index products with the CSM–CERES–maize model for corn yield estimation. International Journal of Remote Sensing, 32(4), 1039–1065.

Ferrise, R., Moriondo, M., & Bindi, M. (2011). Probabilistic assessments of climate change impacts on durum wheat in the Mediterranean region. Natural Hazards and Earth System Science, 11(5), 1293–1302.

Ferrise, R., Toscano, P., Pasqui, M., Moriondo, M., Primicerio, J., Semenov, M., et al. (2015). Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin. Climate Research, 65, 7–21.

Ferrise, R., Triossi, A., Stratonovitch, P., Bindi, M., & Martre, P. (2010). Sowing date and nitrogen fertilisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and simulation study. Field Crops Research, 117(2–3), 245–257.

Franzen, D. W., & Peck, T. R. (1993). Soil sampling for variable rate fertilization. In R. G. Hoeft (Ed.), Proceedings of illinois fertilizer conference (pp. 81–90). Urbana, IL, USA: University of Illinois, Cooperative Extension Service.

Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA). Agronomy Journal, 96(1), 100–108.

Girma, K., Holtz, S. L., Arnall, D. B., Fultz, L. M., Hanks, T. L., Lawles, K. D., et al. (2007). Weather, fertilizer, previous year yield, and fertilizer levels affect ensuing year fertilizer response of wheat. Agronomy Journal, 99(6), 1607–1614.

Hansen, J., Challinor, A., Ines, A., Wheeler, T., & Moron, V. (2006). Translating climate forecasts into agricultural terms: Advances and challenges. Climate Research, 33, 27–41.

Hansen, J. W., & Indeje, M. (2004). Linking dynamic seasonal climate forecasts with crop simulation for maize yield prediction in semi-arid Kenya. Agricultural and Forest Meteorology, 125(1–2), 143–157.

Hatfield, J. L., Kanemasu, E. T., Asrar, G., Jackson, R. D., Pinter, P. J., Reginato, R. J., et al. (1986). Leaf-area estimates from spectral measurements over various planting dates of wheat. International Journal of Remote Sensing, 6, 167–175.

Heege, H. J. (2013). Site-specific fertilizing. In H. J. Heege (Ed.), Precision in crop farming (pp. 193–271). Dordrecht, NL: Springer.

Holland, K. H., & Schepers, J. S. (2010). Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal, 102(5), 1415–1424.

Holland, K. H., & Schepers, J. S. (2013). Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agriculture, 14(1), 71–85.

Hornung, A., Khosla, R., Reich, R., & Westfall, D. G. (2003). Evaluation of site-specific management zones: Grain yield and nitrogen use efficiency. In J. Stafford & A. Werner (Eds.), Precision agriculture proceedings of the 3rd European conference on precision agriculture (pp. 297–302). Wageningen, The Netherlands: Wageningen Academic Publishers.

Huang, Y., Zhu, Y., Li, W., Cao, W., & Tian, Y. (2013). Assimilating remotely sensed information with the wheatgrow model based on the ensemble square root filter for improving regional wheat yield forecasts. Plant Production Science, 16(4), 352–364.

Ines, A. V., Das, N. N., Hansen, J. W., & Njoku, E. G. (2013). Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction. Remote Sensing of Environment, 138, 149–164.

Jamieson, P. D., & Semenov, M. A. (2000). Modelling nitrogen uptake and redistribution in wheat. Field Crops Research, 68(1), 21–29.

Jamieson, P. D., Semenov, M. A., Brooking, I. R., & Francis, G. S. (1998). Sirius: A mechanistic model of wheat response to environmental variation. European Journal of Agronomy, 8, 161–179.

Johnson, G. V., & Raun, W. R. (2003). Nitrogen response index as a guide to fertilizer management. Journal of Plant Nutrition, 26(2), 249–262.

Jones, C. A., & Kiniry, J. R. (1986). CERES-maize: A simulation model of maize growth and development. College Station, TX, USA: Texas A&M University Press.

Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (New method for the determination of nitrogen in organic substances). Zeitschrift für Analytische Chemie, 22, 366–382.

Lawless, C., & Semenov, M. A. (2005). Assessing lead-time for predicting wheat growth using a crop simulation model. Agricultural and Forest Meteorology, 135(1–4), 302–313.

Li, F., Gnyp, M. L., Jia, L., Miao, Y., Yu, Z., Koppe, W., et al. (2008). Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Research, 106(1), 77–85.

Lukina, E. V., Freeman, K. W., Wynn, K. J., Thomason, W. E., Mullen, R. W., Stone, M. L., et al. (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. Journal of Plant Nutrition, 24(6), 885–898.

Marletto, V., Ventura, F., Fontana, G., & Tomei, F. (2007). Wheat growth simulation and yield prediction with seasonal forecasts and a numerical model. Agricultural and Forest Meteorology, 147(1–2), 71–79.

Martre, P., Jamieson, P. D., Semenov, M. A., Zyskowski, R. F., Porter, J. R., & Triboi, E. (2006). Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy, 25(2), 138–154.

Mishra, N., Prodhomme, C., & Guemas, V. (2019). Multi-model skill assessment of seasonal temperature and precipitation forecasts over Europe. Climate Dynamics, 52(7–8), 4207–4225.

Morari, F. (2010). Sud-project 2. Crop rotation and fertilisation. Action 2: Evaluation at the farm scale. Identification of innovative cropping systems in Venice lagoon watershed. Summary results (pp. 37–48). Legnaro, Padova, Italy: Veneto Agricoltura (in Italian).

Morari, F., Zanella, V., Sartori, L., Visioli, G., Berzaghi, P., & Mosca, G. (2018). Optimising durum wheat cultivation in North Italy: Understanding the effects of site-specific fertilization on yield and protein content. Precision Agriculture, 19(2), 257–277.

Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. (2017). Chapter four. Delineation of soil management zones for variable rate fertilization: A review. Advances in Agronomy, 143, 175e245.

Pavan, V., & Doblas-Reyes, F. J. (2013). Calibrated multi-model ensemble summer temperature predictions over Italy. Climate Dynamics, 41(7–8), 2115–2132.

Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85.

Porter, J. R., Challinor, A. J., Henriksen, C. B., Howden, S. M., Martre, P., & Smith, P. (2019). Invited review: Intergovernmental Panel on Climate Change, agriculture, and food—A case of shifting cultivation and history. Global Change Biology, 25(8), 2518–2529.

Prudnikova, E., Savin, I., Vindeker, G., Grubina, P., Shishkonakova, E., & Sharychev, D. (2019). Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sensing, 11, 1932.

Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131–138.

Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.

Raun, W. R., Solie, J. B., & Stone, M. L. (2011). Independence of yield potential and crop nitrogen response. Precision Agriculture, 12(4), 508–518.

Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., et al. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36(19–20), 2759–2781.

Rodriguez, D., de Voil, P., Hudson, D., Brown, J. N., Hayman, P., Marrou, H., et al. (2018). Predicting optimum crop designs using crop models and seasonal climate forecasts. Scientific Reports, 8(1), 2231.

Samborski, S. M., Gozdowski, D., Stępień, M., Walsh, O. S., & Leszczyńska, E. (2016). On-farm evaluation of an active optical sensor performance for variable nitrogen application in winter wheat. European Journal of Agronomy, 74, 56–67.

Sartori, L. (2010). Sud-project 3. Precision agriculture and conservation agriculture. Action 1: Precision agriculture. In Identification of innovative cropping systems in Venice lagoon watershed. Summary results (pp. 67–76). Legnaro, Padova, Italy: Veneto Agricoltura (in Italian).

Scharf, P. C., Kitchen, N. R., Sudduth, K. A., Davis, J. G., Hubbard, V. C., & Lory, J. A. (2005). Field-scale variability in optimal nitrogen fertilizer rate for corn. Agronomy Journal, 97(2), 452–461.

Scudiero, E., Teatini, P., Manoli, G., Braga, F., Skaggs, T. H., & Morari, F. (2018). Workflow to establish time-specific zones in precision agriculture by spatiotemporal integration of plant and soil sensing data. Agronomy, 8, 253.

Semenov, M. A., & Barrow, E. M. (1997). Use of a stochastic weather generator in the development of climate change scenarios. Climatic change, 35(4), 397–414.

Semenov, M. A., & Doblas-Reyes, F. J. (2007). Utility of dynamical seasonal forecasts in predicting crop yield. Climate Research, 34(1), 71–81.

Shin, D. W., Baigorria, G. A., Lim, Y.-K., Cocke, S., LaRow, T. E., O’Brien, J. J., et al. (2010). Assessing maize and peanut yield simulations with various seasonal climate data in the southeastern United States. Journal of Applied Meteorology and Climatology, 49(4), 592–603.

Soil Survey Staff. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys, second edition. Agriculture handbook, USDA n. 436. Natural Resources Conservation Service. Washington, DC, USA: US Government Printing Office.

Solie, J. B., Raun, W. R., & Stone, M. L. (1999). Submeter spatial variability of selected soil and bermudagrass production variables. Soil Science Society of America Journal, 63(6), 1724–1733.

Stone, M. L., Solie, J. B., Raun, W. R., Whimey, R. W., Taylor, S. L., & Ringa, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE, 39, 1623–1631.

Tao, F., Rötter, R. P., Palosuo, T., Díaz-Ambrona, C. G. H., Mínguez, M. I., Semenov, M. A., et al. (2017). Designing future barley ideotypes using a crop model ensemble. European Journal of Agronomy, 82, 144–162.

Thorp, K. R., Hunsaker, D. J., & French, A. N. (2010). Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model. Transactions of the ASABE, 53(1), 251–262.

Vazifedoust, M., Van Dam, J. C., Bastiaanssen, W. G. M., & Feddes, R. A. (2009). Assimilation of satellite data into agrohydrological models to improve crop yield forecasts. International Journal of Remote Sensing, 30(10), 2523–2545.

Vermeulen, S. J., Aggarwal, P. K., Ainslie, A., Angelone, C., Campbell, B. M., Challinor, A. J., et al. (2012). Options for support to agriculture and food security under climate change. Environmental Science & Policy, 15(1), 136–144.

Visioli, G., Bonas, U., Cortivo, D., Pasini, C., Marmiroli, G., Mosca, N., et al. (2018). Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. Journal of the Science of Food and Agriculture, 98(6), 2360–2369.

Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., et al. (2018). Multimodel ensembles improve predictions of crop-environment-management interactions. Global Change Biology, 24(11), 5072–5083.

Webber, H., Ewert, F., Olesen, J. E., Müller, C., Fronzek, S., Ruane, A. C., et al. (2018). Diverging importance of drought stress for maize and winter wheat in Europe. Nature Communications. https://doi.org/10.1038/s41467-018-06525-2.

Weisheimer, A., & Palmer, T. N. (2014). On the reliability of seasonal climate forecasts. Journal of The Royal Society Interface, 11(96), 20131162.

Wibawa, W. D., Dludlu, D. L., Swenson, L. J., Hopkins, D. G., & Dahnke, W. C. (1993). Variable fertilizer application based on yield goal, soil fertility, and soil map unit. Journal of Production Agriculture, 6(2), 255–261.

Yao, F., Tang, Y., Wang, P., & Zhang, J. (2015). Estimation of maize yield by using a process-based model and remote sensing data in the Northeast China Plain. Physics and Chemistry of the Earth, Parts A/B/C, 87, 142–152.

Zanella, V., Ortiz, B. V., Thorp, K., Morari, F., Mosca, G., & Hoogenboom, G. (2015). Combining crop sensing and simulation modeling to assess within-field corn nitrogen stress. In J. V. Stafford (Ed.), Precision agriculture’15 Proceedings of the 10th European conference on precision agriculture (pp. 391–398). Wageningen, The Netherlands: Wageningen Academic Publishers.

Zinyengere, N., Mhizha, T., Mashonjowa, E., Chipindu, B., Geerts, S., & Raes, D. (2011). Using seasonal climate forecasts to improve maize production decision support in Zimbabwe. Agricultural and Forest Meteorology, 151(12), 1792–1799.