Coupling of Cu Catalyst and Phosphonated Ru Complex Light Absorber with TiO2 as Bridge to Achieve Superior Visible Light CO2 Photoreduction

Rui Xu1, Hua Xu2, Shangbo Ning1, Qiqi Zhang1, Zhongshan Yang1, Jinhua Ye1,3,4
1TJU-NIMS International Collaboration Laboratory, School of Materials Science and Engineering, Tianjin University, Tianjin, China
2School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, China
3Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Japan
4International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba-Shi, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang CL, Sun ZX, Zheng Y et al (2019) Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A 7(3):865–887

Tong H, Ouyang S, Bi YP et al (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24(2):229–251

Chen Y, Wang DK, Deng XY et al (2017) Metal–organic frameworks (MOFs) for photocatalytic CO2 reduction. Catal Sci Technol 7(21):4893–4904

Meng XG, Ouyang S, Kako T et al (2014) Photocatalytic CO2conversion over alkali modified TiO2without loading noble metal cocatalyst. Chem Commun 50(78):11517–11519

Zhu M, Ge Q, Zhu X (2020) Catalytic reduction of CO2 to CO via reverse water gas shift reaction: recent advances in the design of active and selective supported metal catalysts. Trans of Tianjin Univ 26(3):172–187

Guo ZG, Cheng SW, Cometto C et al (2016) Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J Am Chem Soc 138(30):9413–9416

Zhao X, Zhou J, Sun CY et al (2020) A ruthenium/polyoxometalate for efficient CO2 photoreduction under visible light in diluted CO2. Nanotechnology 31(25):255402

Hong DC, Tsukakoshi Y, Kotani H et al (2017) Visible-light-driven photocatalytic CO2 reduction by a Ni(II) complex bearing a bioinspired tetradentate ligand for selective CO production. J Am Chem Soc 139(19):6538–6541

Cheung PL, MacHan CW, Malkhasian AYS et al (2016) Photocatalytic reduction of carbon dioxide to CO and HCO2H using fac-Mn(CN)(bpy)(CO)3. Inorg Chem 55(6):3192–3198

Teplý F (2011) Photoredox catalysis by [Ru(bpy)3]2+ to trigger transformations of organic molecules. Organic synthesis using visible-light photocatalysis and its 20th century roots. Chem Commun 76(7):859–917

Prier CK, Rankic DA, MacMillan DWC (2013) Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem Rev 113(7):5322–5363

Ning SB, Xu H, Qi YH et al (2020) Microstructure induced thermodynamic and kinetic modulation to enhance CO2 photothermal reduction: a case of atomic-scale dispersed Co–N species anchored Co@C hybrid. ACS Catal 10(8):4726–4736

Yuan L, Hung SF, Tang ZR et al (2019) Dynamic evolution of atomically dispersed Cu species for CO2 photoreduction to solar fuels. ACS Catal 9(6):4824–4833

Wu YA, McNulty I, Liu C (2019) Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat Energy 4(11):957–968

Xie H, Wang JY, Ithisuphalap K et al (2017) Recent advances in Cu-based nanocomposite photocatalysts for CO2 conversion to solar fuels. J Energy Chem 26(6):1039–1049

DeSario PA, Pitman CL, Delia DJ et al (2019) Low-temperature CO oxidation at persistent low-valent Cu nanoparticles on TiO2 aerogels. Appl Catal B Environ 252:205–213

Sundin E, Abrahamsson M (2018) Long-lived charge separation in dye–semiconductor assemblies: a pathway to multi-electron transfer reactions. Chem Commun 54(42):5289–5298

Woolerton TW, Sheard S, Reisner E et al (2010) Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. J Am Chem Soc 132(7):2132–2133

Abdellah M, El-Zohry AM, Antila LJ et al (2017) Time-resolved IR spectroscopy reveals a mechanism with TiO2 as a reversible electron acceptor in a TiO2–Re catalyst system for CO2 photoreduction. J Am Chem Soc 139(3):1226–1232

Windle CD, Pastor E, Reynal A et al (2015) Improving the photocatalytic reduction of CO2 to CO through immobilisation of a molecular Re catalyst on TiO2. Chem Eur J 21(9):3746–3754

Lin HF, Li LP, Zhao ML et al (2012) Synthesis of high-quality brookite TiO2 single-crystalline nanosheets with specific facets exposed: tuning catalysts from inert to highly reactive. J Am Chem Soc 134(20):8328–8331

Zhao M, Xu H, Chen H et al (2015) Photocatalytic reactivity of 121 and 211 facets of brookite TiO2 crystals. J Mater Chem A 3(5):2331–2337

Li JG, Tang CC, Li D et al (2004) Monodispersed spherical particles of brookite-type TiO2: synthesis, characterization, and photocatalytic property. J Am Ceram Soc 87(7):1358–1361

Tan X, Huang XS, Zou YL et al (2018) Synthesis and characterization of Co-doped brookite titania photocatalysts with high photocatalytic activity. Trans Tianjin Univ 24(2):111–122

Ohno T, Higo T, Saito H et al (2015) Dependence of photocatalytic activity on aspect ratio of a brookite TiO2 nanorod and drastic improvement in visible light responsibility of a brookite TiO2 nanorod by site-selective modification of Fe3+ on exposed faces. J Mol Catal A Chem 396:261–267

Trammell SA, Moss JA, Yang JC et al (1999) Sensitization of TiO2 by phosphonate-derivatized proline assemblies. Inorg Chem 38(16):3665–3669

Tompsett GA, Bowmaker GA, Cooney RP et al (1995) The Raman spectrum of brookite, TiO2 (PbCa, Z = 8). J Raman Spectrosc 26(1):57–62

Xu H, Reunchan P, Ouyang S et al (2013) Anatase TiO2 single crystals exposed with high-reactive 111 facets toward efficient H2 evolution. Chem Mater 25(3):405–411

Liu CP, Yu T, Tan X (2016) Characterization and photocatalytic activity of mixed nanocrystalline TiO2 powders prepared by xerogel-hydrothermal method in different acid solutions. Trans Tianjin Univ 22(5):473–479

Dietrich J, Thorenz U, Förster C et al (2013) Effects of sequence, connectivity, and counter ions in new amide-linked Ru(tpy)2–Re(bpy) chromophores on redox chemistry and photophysics. Inorg Chem 52(3):1248–1264

Tseng IH, Wu JCS, Chou HY (2004) Effects of sol–gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. J Catal 221(2):432–440

Kim W, Frei H (2015) Directed assembly of cuprous oxide nanocatalyst for CO2 reduction coupled to heterobinuclear ZrOCoII light absorber in mesoporous silica. ACS Catal 5(9):5627–5635

Liu YY, Liu FL, Wang RS et al (2019) Characterizing the charge trapping across crystalline and amorphous Si/SiO2/HfO2 stacks from first-principle calculations. Phys Rev Appl 12(6):064012

Moreno-González M, Blasco T, Góra-Marek K et al (2014) Study of propane oxidation on Cu-zeolite catalysts by in situ EPR and IR spectroscopies. Catal Today 227:123–129

Pu Y, Luo YD, Wei XQ et al (2019) Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: surface Lewis acid/base and oxygen defect. Appl Catal B Environ 254:580–586

Li WH, Nie XW, Jiang X et al (2018) ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation. Appl Catal B Environ 220:397–408