Coupling of Compressible Euler Equations
Tóm tắt
The Riemann problem for coupled Euler equations is analysed. The coupling conditions at a steady interface impose continuous pressure and temperature while momentum differs. The outtake of the momentum models the influence of a gas-powered generator linked to a high-pressure gas network. We prove the existence and uniqueness of the solution to the coupled Riemann problem in case the drop in the momentum is sufficiently small. Furthermore, we analyse the coupling problem for the special case of isentropic Euler equations and obtain similar results. The behaviour of coupled isentropic and coupled compressible Euler equations is compared numerically.
Tài liệu tham khảo
An, S., Li, Q., Gedra, T.W.: Natural gas and electricity optimal power flow. In: 2003 IEEE PES Transmission and Distribution Conference and Exposition (IEEE Cat. No.03CH37495), vol. 1, pp 138–143 (2003)
Banda, M.K., Herty, M., Klar, A.: Gas flow in pipeline networks. Netw. Heterog. Media 1, 41–56 (2006)
Bressan, A., Čanić, S., Garavello, M., Herty, M., Piccoli, B.: Flow on networks: recent results and perspectives. Eur. Math. Soc. Surv. Math. Sci. 1, 47–111 (2014)
Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)
Chertkov, M., Fisher, M.W., Backhaus, S., Bent, R., Misra, S.: Pressure fluctuations in natural gas networks caused by gas-electric coupling. In: 2015 48th Hawaii Int. Conf. Syst. Sci., pp 2738–2747 (2015)
Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)
Coclite, G.M., Garavello, M., Piccoli, B.: Traffic flow on a road network. SIAM J. Math. Anal. 36, 1862–1886 (2005)
Colombo, R.M., Garavello, M.: On the Cauchy problem for the p-system at a junction. SIAM J. Math. Anal. 39, 1456–1471 (2008)
Colombo, R.M., Herty, M., Sachers, V.: On 22 conservation laws at a junction. SIAM J. Math. Anal. 40, 605–622 (2008)
Colombo, R.M., Mauri, C.: Euler system at a junction. J. Hyperbolic Differ. Equ. 5, 547–568 (2007)
Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2016)
Dubois, F., Le Floch, P.: Boundary conditions for nonlinear hyperbolic systems of conservation laws. J. Differ. Equ. 71, 93–122 (1988)
Ehrhardt, K., Steinbach, M.C.: KKT Systems in operative planning for gas distribution networks. PAMM 4, 606–607 (2004)
Evans, P.C., Farina, M.F.: The age of gas & the power of networks. https://www.ge.com/sites/default/files/GE_Age_of_GasWhitepaper_20131014v2.eps (2013)
Gerhard, N., Iacono, F., May, G., Müller, S., Schäfer, R.: A high-order discontinuous Galerkin discretization with multiwavelet-based grid adaptation for compressible flows. J. Sci. Comput. 62, 25–52 (2015)
Godlewski, E., Le Thanh, K.-C., Raviart, P.-A.: The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. the case of systems. ESAIM Math. Model. Numer. Anal. 39, 649–692 (2005)
Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation. Laws Applied Mathematical Sciences, vol. 118. Springer, New York (1996)
Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)
Grundel, S., Hornung, N., Roggendorf, S.: Numerical aspects of model order reduction for gas transportation networks. In: Koziel, S., Leifsson, L., Yang, X.-S. (eds.) Simulation-Driven Modeling and Optimization. Springer Proceedings in Mathematics & Statistics, vol. 153, pp 1–28. Springer International Publishing, Switzerland (2016)
Gugat, M., Herty, M., Müller, S.: Coupling conditions for the transition from supersonic to subsonic fluid states. Netw. Heterog. Media 12, 371–380 (2017)
Herty, M.: Modeling, simulation and optimization of gas networks with compressors. Netw. Heterog. Media 2, 81–97 (2007)
Herty, M., Mohring, J., Sachers, V.: A new model for gas flow in pipe networks. Math. Methods Appl. Sci. 33, 845–855 (2010)
Herty, M., Müller, S., Gerhard, N., Xiang, G., Wang, B.: Fluid-structure coupling of linear elastic model with compressible flow models. Int. J. Numer. Methods Fluids 86, 365–391 (2018)
Herty, M., Sachers, V.: Adjoint calculus for optimization of gas networks. Netw. Heterog. Media 2, 733–750 (2007)
Hovhannisyan, N., Müller, S., Schäfer, R.: Adaptive multiresolution discontinuous Galerkin schemes for conservation laws. Math. Comput. 83, 113–151 (2014)
Ibrahim, T.K., Basrawi, F., Awad, O.I., Abdullah, A.N., Najafi, G., Mamat, R., Hagos, F.Y.: Thermal performance of gas turbine power plant based on exergy analysis. Appl. Therm. Eng. 115, 977–985 (2017)
Kolb, O., Lang, J., Bales, P.: An implicit box scheme for subsonic compressible flow with dissipative source term. Numer. Algor. 53, 293–307 (2010)
Ma, F., Jiao, Z., Li, Z., Wang, Y.: Impacts of gas network emergencies on power system through gas turbine. In: 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp 1–5 (2017)
Martin, A., Moeller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program. 105, 563–582 (2005)
Menikoff, R., Plohr, B.J.: The Riemann problem for fluid flow of real materials. Rev. Mod. Phys. 61, 75–130 (1989)
Müller, S., Sikstel, A.: Multiwave. Institut für Geomtrie und Praktische Mathematik, RWTH Aachen. https://www.igpm.rwth-aachen.de/forschung/multiwave (2018)
Osiadacz, A.: Simulation of transient flow in gas networks. Int. J. Numer. Methods Fluids 4, 13–23 (1984)
Reigstad, G.A.: Existence and uniqueness of solutions to the generalized Riemann problem for isentropic flow. SIAM J. Appl. Math. 75, 679–702 (2015)
Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015)
Rowen, W.I.: Simplified mathematical representations of single shaft gas turbines in mechanical drive service. In: ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition, Vol. 5, No. 92-GT-022, pp. V005t15a001 (1992)
Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks. Optim. Eng. 16, 131–164 (2015)
Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203, 345–361 (2007)
Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 3rd edn. Springer, Berlin (2009)
Unsihuay, C., Lima, J.W.M., de Souza, A.C.Z.: Modeling the integrated natural gas and electricity optimal power flow. In: 2007 IEEE Power Engineering Society General Meeting, pp. 1–7 (2007)
Wedler, G.: Lehrbuch der Physikalischen Chemie. Wiley, New York (2005)
Zhou, J., Adewumi, M.A.: Simulation of transients in natural gas pipelines using hybrid TVD schemes. Int. J. Numer. Methods Fluids 32, 407–437 (2000)
Zlotnik, A., Chertkov, M., Backhaus, S.: Optimal control of transient flow in natural gas networks. In: 2015 IEEE 54Th Annual Conference On Decision and Control (CDC), pp 4563–4570, IEEE (2015)
Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Control policies for operational coordination of electric power and natural gas transmission systems. In: 2016 American Control Conference (ACC), pp. 7478–7483 (2016)