Coupling hydrogeophysics with hydrodynamic modelling to infer subsurface hydraulic architecture of an alluvial floodplain

Near Surface Geophysics - Tập 19 Số 3 - Trang 335-352 - 2021
J. M. Martin1, Mark E. Everett1, Peter S.K. Knappett1
1Department of Geology and Geophysics Texas A&M University College Station Texas

Tóm tắt

ABSTRACTThis paper underscores the importance of spatially dense geophysical data sets for making informed decisions in water management strategies. Such decisions may require understanding how site‐specific subsurface architecture – especially hydraulic connectivity – impacts the response of a shallow aquifer to anthropogenic hydrologic disturbances (e.g. over‐pumping of a shallow aquifer). At a 0.2‐km2 alluvial floodplain site characterized by thick clay over fine sand to gravel and shale bedrock in the subtropical, sub‐humid belt of the Gulf Coast of the United States, we image an asymmetrically shaped, compartmentalized, sand‐dominated channel‐belt using electrical resistivity tomography and 31 time‐domain electromagnetic soundings probing to depths of ∼40 m and ∼90 m, respectively. Lithological interpretation and a hydrological model are developed based on the geophysical data and nearby sediment cores, where the resistivity of the groundwater is 9.1 Ωm. In a modelling scenario wherein the compartmentalized sand channel‐belt starts out dry (i.e. an over‐pumped shallow aquifer), we simulate 26 weeks of infiltration due to flooding of the surface. Preferential filling of the channel‐belt occurs through its sides rather than from above, generating a new understanding of the hydraulic connectivity around and into asymmetrically shaped, sand‐dominated channel‐belts. This insight can inform decisions about the optimal placement of shallow water wells in a heterogeneous alluvial floodplain aquifer system and also highlights the dangers of over‐pumping.

Từ khóa


Tài liệu tham khảo

10.1016/j.sedgeo.2008.06.010

10.1016/j.geomorph.2018.05.012

10.1111/j.1745-6584.2003.tb02576.x

10.1016/j.earscirev.2012.09.003

10.1046/j.1365-3091.2000.00008.x

10.1111/j.1365-2478.1996.tb00167.x

10.1016/j.crte.2009.07.008

10.1029/2008WR006953

10.1130/0091-7613(1995)023<0365:ESOAFA>2.3.CO;2

10.3390/w7073367

10.1016/S0012-8252(02)00134-4

10.1016/j.jconhyd.2010.07.001

10.1190/1.1440762

10.1017/CBO9781139088435

10.1007/1-4020-3102-5_6

10.1016/j.jappgeo.2011.06.011

10.1016/B978-0-444-53802-4.00193-7

10.1016/j.jhydrol.2009.06.038

10.2136/vzj2003.4160

10.1007/s12665-019-8074-x

10.1016/j.jhydrol.2017.10.028

10.1016/j.geomorph.2015.11.012

10.1016/j.jhydrol.2015.03.030

10.1130/G30783.1

10.1002/2013WR014593

10.1016/S0040-1951(99)00011-6

10.5194/hess-21-6069-2017

Interpex Limited. (2012)IXG‐TEM instruction manual.http://www.interpex.com

Jerolmack D.J., 2007, Complexity in a cellular model of river avulsion, Geomorphology, Special Issue, 91, 259

10.1016/j.jhydrol.2013.06.014

10.1002/wat2.1011

10.1016/j.advwatres.2015.09.019

Loke M.H.(1999)Electrical imaging surveys for environmental and engineering studies: a practical guide to 2‐D and 3‐D surveys.https://urldefense.com/v3/__https://www.aarhusgeosoftware.dk__;!!KwNVnqRv!RiVLnEsgJgJsUkGy2ApB0CccEj6nd7F9greAKlO7_fyI1HCFwhZG25k35X_9VcDmDSgqd9tcKrKPGA$

10.1306/D42681D5-2B26-11D7-8648000102C1865D

10.1016/S1040-6182(00)00120-8

10.1111/j.1745-6584.2008.00489.x

10.1306/2DC4093D-0E47-11D7-8643000102C1865D

10.1007/s12665-009-0344-6

10.1130/0016-7606(2000)112<1787:IAPFAA>2.0.CO;2

10.1016/j.sedgeo.2006.07.004

10.1190/1.2734365

10.1016/j.jappgeo.2011.12.011

10.1002/2017WR021619

10.1016/j.advwatres.2017.08.017

Sedaghatdoost A. Mohanty B.andHuang Y.(2019)The effect of heterogeneities in soil physical and chemical properties on redox biogeochemistry in subsurface soils.American Geophysical Union Fall Meeting 2019 Expanded Abstracts San Francisco United States B33E‐08.

10.1002/2017WR020610

Šimůlek J. Šejna M.andvanGenuchten M.T.(2012)The HYDRUS software package for simulating two‐ and three‐dimensional movement of water heat and multiple solutes variably saturated porous media ‐ technical manual (version 2.0).PC Progress Prague Czech Republic

10.1146/annurev.earth.32.101802.120201

10.1190/1.1442716

10.1016/j.geomorph.2007.07.014

Texas Water Development Board (TWDB). (2012)Water for Texas 2012: State Water Plan.https://www.twdb.texas.gov/waterplanning/swp/2012/index.asp

United States Geological Survey (USGS). (2017)Brazos Freestone and Robertson Counties Lidar 2017‐03‐01.https://data.tnris.org/collection/b6ea8e3a-c8b7-4d97-b4d1-4eb8172eb87d

10.2118/1863-A

World Atlas. (2019)Outlined Map of North America.http://non-art.info/map-of-blank-outline-map-of-north-america/outlined-map-of-north-america-map-of-north-america/

10.1016/0037-0738(93)90022-W

Wrobleski C.L.(1996)An aquifer characterization at the Texas A&M University Brazos River hydrologic field site Burleson Co. Texas (Master's thesis). Retrieved from OAKTrust Library viahttps://oaktrust.library.tamu.edu/handle/1969.1/ETD-TAMU-1996-THESIS-W76. College Station TX: Texas A&M University.

10.1111/j.1365-3091.1997.tb01529.x

10.1016/j.advwatres.2013.01.004

10.1190/1.9781560801719.ch9