Coupling Remote Sensing and GIS with KINEROS2 Model for Spatially Distributed Runoff Modeling in a Himalayan Watershed
Tóm tắt
Excessive runoff and high soil erosion rate are the critical problems in the Himalayan terrain, mainly due to rugged topography and high intensity rains. Accurate quantification of runoff and erosion is thus of paramount importance for taking appropriate measures to sustain the soil productivity in the Himalayan watersheds. Distributed, process-based hydrological and erosion models are ideal for this purpose. However, model parameterization in the rugged, inaccessible and thus generally a data scarce Himalayan watershed is a major challenge. The present study primarily investigates the applicability of kinematic runoff and erosion model (KINEROS2) model in a Himalayan watershed besides exploring the potential of satellite remote sensing and GIS in spatially distributed runoff modeling. The KINEROS2 model, is an event-based, distributed, water and erosion process model. It discretizes the watershed into a mosaic of planes and channels based on topography. The runoff is estimated for each plane which eventually flows to adjacent channel and is then routed to estimate the total runoff at the watershed outlet. Remote sensing is primarily used for model parameterization, i.e., characterizing the individual planes and channels. Optimized digital elevation model and fine-scale land-use/land-cover information are generated using high-resolution panchromatic and multi-spectral optical and microwave satellite imagery. The resulting data on near-surface soil moisture from radar imagery (ENVISAT ASAR) calibrated the initial soil moisture in the model, whose performance is evaluated using root mean square error and Nash–Sutcliffe that reveals that KINEROS2 model works quite well in a small Himalayan watershed. The sensitivity analysis indicates that saturated soil hydraulic conductivity is the most sensitive parameter influencing the runoff compared to Manning’s coefficient and initial soil moisture. The model output is also used for validating the remote sensing and geographical information system (GIS) based hydrologic response units delineated in a previous research study. The study highlights that the coupling of remote sensing and GIS with process models, such as KINEROS2, can provide valuable information in planning sustainable watershed management practices in the Himalayan watersheds.
Tài liệu tham khảo
Al-Qurashi, A., McIntyre, N., Wheater, H., & Unkrich, C. (2008). Application of the Kineros2 rainfall-runoff model to an arid catchment in Oman. Journal of Hydrology, 355(1–4), 91–105. https://doi.org/10.1016/j.jhydrol.2008.03.022.
An, M., Han, Y., Xu, L., Wang, X., Ao, C., & Pang, D. (2019). KINEROS2-based simulation of total nitrogen loss on slopes under rainfall events. CATENA, 177, 13–21. https://doi.org/10.1016/j.catena.2019.01.039.
Baghdadi, N., King, C., Bourguignon, A., & Remond, A. (2002). Potential of ERS and Radarsat data for surface roughness monitoring over bare agricultural fields: Application to catchments in Northern France. International Journal of Remote Sensing, 23(17), 3427–4344. https://doi.org/10.1080/01431160110110974.
Band, L. E., & Moore, I. D. (1995). Scale: Landscape attributes and geographical information systems. Hydrological Processes, 9(3–4), 401–422. https://doi.org/10.1002/hyp.3360090312.
Beven, K. (2012). Rainfall-runoff modelling. London: Wiley.
Canfield, H. E., & Goodrich, D. C. (2006). The impact of parameter lumping and geometric simplification in modelling runoff and erosion in the shrublands of southeast Arizona. Hydrological Processes, 20(1), 17–35. https://doi.org/10.1002/hyp.5896.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900. https://doi.org/10.13031/2013.23153.
Duru, J. O., & Hjelmfelt, A. T. (1994). Investigating prediction capability of HEC-1 and KINEROS kinematic wave runoff models. Journal of Hydrology, 157(1–4), 87–103. https://doi.org/10.1016/0022-1694(94)90100-7.
Entekhabi, D., Nakamura, H., & Njoku, E. G. (1994). Solving the inverse problem for soil moisture and temperature profiles by sequential assimilation of multifrequency remotely sensed observations. IEEE Transactions on Geoscience and Remote Sensing, 32(2), 438–448.
Famiglietti, J. S., & Wood, E. F. (1994). Multiscale modeling of spatially variable water and energy balance processes. Water Resources Research, 30(11), 3061–3078. https://doi.org/10.1029/94WR01498.
Flügel, W. A. (1997). Combining GIS with regional hydrological modelling using hydrological response units (HRUs): An application from Germany. Mathematics and Computers in Simulation, 43(3–6), 297–304. https://doi.org/10.1016/s0378-4754(97)00013-x.
Gal, L., Grippa, M., Hiernaux, P., Pons, L., & Kergoat, L. (2017). The paradoxical evolution of runoff in the pastoral Sahel: Analysis of the hydrological changes over the Agoufou watershed (Mali) using the KINEROS-2 model. Hydrology and Earth System Sciences, 21(9), 4591. https://doi.org/10.5194/hess-21-4591-2017.
Goncalves, J. A., & Oliveira, A. M. (2004). Accuracy analysis of DEMs derived from ASTER imagery. International Archives of Photogrammetry and Remote Sensing, 35, 168–172.
Goodrich, D. C., Burns, I. S., Unkrich, C. L., Semmens, D. J., Guertin, D. P., Hernandez, M., et al. (2012). KINEROS2/AGWA: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1561–1574.
Goodrich, D. C., Williams, D. G., Unkrich, C. L., Hogan, J. F., Scott, R. L., & Hultine, K. R., et al. (2013). Comparison of methods to estimate ephemeral channel recharge, Walnut Gulch, San Pedro River Basin, Arizona. In Groundwater recharge in a desert environment: The Southwestern United States. https://doi.org/https://doi.org/10.1029/009WSA06
Gupta, S. C., & Kapoor, V. K. (1970). Fundamentals of mathematical statistics. Delhi: Sultan Chand & Sons.
Jain, S. K., Kumar, S., & Varghese, J. (2001). Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Resources Management, 15(1), 41–54. https://doi.org/10.1023/A:1012246029263.
Kalin, L., Govindaraju, R. S., & Hantush, M. M. (2003). Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds, 276(1–4), 89–111. Journal of Hydrology. https://doi.org/10.1016/S0022-1694(03)00072-6.
Kalin, L., & Hantush, M. H. (2006). Comparative assessment of two distributed watershed models with application to a small watershed. Hydrological Processes, 20(11), 2285–2307. https://doi.org/10.1002/hyp.6063.
King, C. H., & Delpont, G. (1993). Spatial assessment of erosion: contribution of remote sensing, a review. Remote Sensing Reviews, 7(3–4), 223–232.
Kite, G. W. (1995). Scaling of input data for macroscale hydrologic modeling. Water Resources Research, 7(3–4), 223–232. https://doi.org/10.1029/95WR02102.
Michaud, J. D., & Sorooshian, S. (1994). Effect of rainfall-sampling errors on simulations of desert flash floods. Water Resources Research, 30(10), 2765–2775. https://doi.org/10.1029/94WR01273.
Miller, S. N., Semmens, D. J., Goodrich, D. C., Hernandez, M., Miller, R. C., Kepner, W. G., & Guertin, D. P. (2007). The automated geospatial watershed assessment tool. Environmental Modelling and Software, 22(3), 365–377. https://doi.org/10.1016/j.envsoft.2005.12.004.
Miller, S., & Semmens, D. (2002). GIS-based hydrologic modeling: the automated geospatial watershed assessment tool. In Proceeding of the second federal interagency hydrologic modeling conference (Vol. 28). Las Vegas Nevada.
Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103.
Moore, I. D., Gessler, P. E., Nielsen, G. A., & Peterson, G. A. (1993). Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 57(2), 443–452. https://doi.org/10.2136/sssaj1993.03615995005700020058x.
Morgan, R. P. C. (2001). A simple approach to soil loss prediction: A revised Morgan-Morgan-Finney model. CATENA, 44(4), 305–322. https://doi.org/10.1016/S0341-8162(00)00171-5.
Morgan, R. P. C. (2005). Soil erosion and conservation. Journal of Chemical Information and Modeling.
Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Parlange, J. Y., Lisle, I., Braddock, R. D., & Smith, R. E. (1982). The three-parameter infiltration equation. Soil Science, 133(6), 337–341. https://doi.org/10.1097/00010694-198206000-00001.
Quincey, D. J., Luckman, A., Hessel, R., Davies, R., Sankhayan, P. L., & Balla, M. K. (2007). Fine-resolution remote-sensing and modelling of Himalayan catchment sustainability. Remote Sensing of Environment, 107(3), 430–439. https://doi.org/10.1016/j.rse.2006.09.021.
Rawls, W. J., Brakensiek, C. L., & Saxton, K. E. (1982). Estimation of soil water properties. Transactions - American Society of Agricultural Engineers, 25(5), 1316–1320. https://doi.org/10.13031/2013.33720.
Rovey, E. W., Woolhiser, D. A., & Smith, R. E. (1977). A distributed kinematic model of upland watersheds (p. 52). Colo State Univ (Fort Collins) Hydrol Pap.
Saran, S., Sterk, G., & Kumar, S. (2007). Optimal land use/cover classification using remote sensing imagery for hydrological modelling in a Himalayan watershed. In Remote sensing for agriculture, ecosystems, and hydrology IX (Vol. 6742, p. 67420N). International Society for Optics and Photonics. https://doi.org/https://doi.org/10.1117/12.769056
Saran, S., Sterk, G., & Kumar, S. (2009). Optimal land use/land cover classification using remote sensing imagery for hydrological modeling in a Himalayan watershed. Journal of Applied Remote Sensing, 3(1), 033551.
Saran, S., Sterk, G., Nair, R., & Chatterjee, R. S. (2014). Estimation of near surface soil moisture in a sloping terrain of a Himalayan watershed using ENVISAT ASAR multi-incidence angle alternate polarisation data. Hydrological Processes, 28(3), 895–904. https://doi.org/10.1002/hyp.9632.
Saran, S., Sterk, G., Peters, P., & Dadhwal, V. K. (2010). Evaluation of digital elevation models for delineation of hydrological response units in a himalayan watershed. Geocarto International, 25(2), 105–122. https://doi.org/10.1080/10106040903051967.
Semmens, D. J., Goodrich, D. C., Unkrich, C. L., Smith, R. E., Woolhiser, D. A., & Miller, S. N. (2007). KINEROS2 and the AGWA modelling framework. Hydrological Modelling in Arid and Semi-Arid Areas, . https://doi.org/10.1017/CBO9780511535734.006.
Siakeu, J., & Oguchi, T. (2000). Soil erosion analysis and modelling: A review. Chikei.
Sidman, G., Guertin, D. P., Goodrich, D. C., Unkrich, C. L., & Burns, I. S. (2016). Risk assessment of post-wildfire hydrological response in semiarid basins: the effects of varying rainfall representations in the KINEROS2/AGWA model. International Journal of Wildland Fire, 25(3), 268–278. https://doi.org/10.1071/WF14071.
Smith, R. E., Goodrich, D. C., & Unkrich, C. L. (1999). Simulation of selected events on the Catsop catchment by KINEROS2. A report for the GCTE conference on catchment scale erosion models. CATENA, 37(3–4), 457–475. https://doi.org/10.1016/S0341-8162(99)00033-8.
Smith, R. E., Goodrich, D. C., Woolhiser, D. A., & Unkrich, C. L. (1995). Kineros: A kinematic runoff and erosion model. In Computer models of watershed hydrology.
Smith, R. E., & Parlange, J.-Y. (1978). A parameter-efficient hydrologic infiltration model. Water Resources Research, 14(3), 533–538. https://doi.org/10.1029/WR014i003p00533.
Smith, R. E., & Quinton, J. N. (2000). Dynamics and scale in simulating erosion by water. In Soil erosion (pp. 283–294). Springer, Berlin, Heidelberg.
Srivastava, H. S., Patel, P., Manchanda, M. L., & Adiga, S. (2003). Use of multiincidence angle RADARSAT-1 SAR data to incorporate the effect of surface roughness in soil moisture estimation. IEEE Transactions on Geoscience and Remote Sensing, 41(7), 1638–1640. https://doi.org/10.1109/TGRS.2003.813356.
Star, J. L., Estes, J. E., McGwire, K. C., Arvidson, R. E., & Rycroft, M. J. (Eds.). (1997). Integration of geographic information systems and remote sensing, (Vol. 5). Cambridge: Cambridge University Press.
Tiwari, P. C. (2000). Land-use changes in Himalaya and their impact on the plains ecosystem: Need for sustainable land use. Land Use Policy, 17(2), 101–111. https://doi.org/10.1016/S0264-8377(00)00002-8.
Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave remote sensing: active and passive. Volume III: from theory to applications. Microwave remote sensing: Active and passive. Volume III: From theory to applications.
van Oevelen, P. J., & Hoekman, D. H. (1994). Estimation of areal soil water content during HAPEX-Sahel and EFEDA-Spain. In International geoscience and remote sensing symposium (IGARSS), (Vol. 3, pp. 1591-vol). IEEE. https://doi.org/https://doi.org/10.1109/igarss.1994.399507
Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review. CATENA, 65(1), 2–18. https://doi.org/10.1016/j.catena.2005.10.005.
Wigmosta, M. S., Vail, L. W., & Lettenmaier, D. P. (1994). A distributed hydrology-vegetation model for complex terrain. Water Resources Research, 30(6), 1665–1679. https://doi.org/10.1029/94WR00436.
Wolock, D. M., & Price, C. V. (1994). Effects of digital elevation model map scale and data resolution on a topography-based watershed model. Water Resources Research, 30(11), 3041–3052. https://doi.org/10.1029/94WR01971.
Woolhiser, D. A., Hanson, C. L., & Kuhlman, A. R. (1970). Overland flow on rangeland watersheds. Journal of Hydrology (New Zealand), 336–356.
Woolhiser, D. A., Smith, R.-E., & Goodrich, D.-C. (1990). KINEROS, a kinematic Runoff and Erosion Model: Documentation and User Manual. Department of Agriculture, Agricultural Research Service: U.S.
Yatheendradas, S., Wagener, T., Gupta, H., Unkrich, C., Goodrich, D., Schaffner, M., & Stewart, A. (2008). Understanding uncertainty in distributed flash flood forecasting for semiarid regions. Water Resources Research. https://doi.org/10.1029/2007WR005940.
Ziegler, A. D., Giambelluca, T. W., & Sutherland, R. A. (2001). Erosion prediction on unpaved mountain roads in northern Thailand: validation of dynamic erodibility modelling using KINEROS2. Hydrological Processes, 15(3), 337–358.