Couples d'anneaux partageant un id�al
Tóm tắt
Từ khóa
Tài liệu tham khảo
D. F. Anderson andD. E. Dobbs, Pairs of rings with the same prime ideals. Canadian J. Math.32, 362?384 (1980).
T. Arnold andR. Gilmer, Dimension sequences for commutative rings. Bull. Amer. Math. Soc.79, 407?409 (1973).
E. Bastida andR. Gilmer, Overrings and divisorial ideals of rings of the formD+M. Michigan Math. J.209, 79?95 (1973).
M. B. Boisen andP. B. Sheldon,CPI-extensions: overrings of integral domains with special spectrum. Canadian J. Math.29, 722?737 (1977).
J. W. Brewer, P. A. Montgomery, P. A. Rutter andW. J. Heinzer, Krull dimension of polynomial rings. LNM311, 26?46, Berlin-Heidelberg-New York 1973.
P.-J. Cahen andY. Haouat, Spectra d'anneaux de polynômes sur une suite croissante d'anneaux. Arch. Math.49, 281?285 (1987).
P. M. Eakin, The converse of a wellknown theorem on Noetherian rings. Math. Ann.177, 278?282 (1968).
M. Fontana, Topologically defined classes of commutative rings. Ann. Mat. Bura Appl.123, 331?355 (1980).
M.Fontana, Carrés cartésiens, anneaux divisés et anneaux localement divisés. Prépublication de l'Univ. de Paris-Nord21 (1980).
R.Gilmer, Multiplicative ideal theory. New York 1972.
R. Gilmer, Two constructions of Prüfer domains. J. Reine Angew. Math.239?240, 153?162 (1962).
Y. Haouat, Spectre d'anneaux à plusieurs variables sur une suite croissante d'anneaux. Arch. Math.50, 236?240 (1988).
J. R. Hedstrom andE. G. Houston, Pseudo-valuation domains II Houston J. Math.4, 199?207 (1978).
P.Jaffard, Théorie de la dimension des anneaux de polynômes. Paris 1960.
M.Nagata, Local rings. New York 1975.
T. Parker, A number theoretic characterization of dimension sequences. Amer. J. Math.97, 308?311 (1975).