Coupled application of generative adversarial networks and conventional neural networks for travel mode detection using GPS data
Tài liệu tham khảo
Bagdadi, 2013, Development of a method for detecting Jerks in safety critical events, Accid. Anal. Prev., 10.1016/j.aap.2012.03.032
Bolbol, 2012, Inferring hybrid transportation modes from sparse GPS data using a moving window SVM Classification, Comput. Environ. Urban Syst., 10.1016/j.compenvurbsys.2012.06.001
Byon, Y.J., Liang, S., 2014. Real-Time Transportation Mode Detection Using Smartphones and Artificial Neural Networks: Performance Comparisons between Smartphones and Conventional Global Positioning System Sensors. J. Intell. Transport. Syst.: Technol., Plann., Oper., 2014. https://doi.org/10.1080/15472450.2013.824762.
Dabiri, 2018, Inferring Transportation Modes from GPS Trajectories Using a Convolutional Neural Network, Transport. Res. Part C: Emerg. Technol., 86, 360, 10.1016/j.trc.2017.11.021
Dabiri, 2019, Developing a Twitter-based traffic event detection model using deep learning architectures, Exp. Syst. Appl., 118, 425, 10.1016/j.eswa.2018.10.017
Dabiri, 2019, Semi-supervised deep learning approach for transportation mode identification using GPS trajectory data, IEEE Trans. Knowl. Data Eng.
Endo, Y., Toda, H., Nishida, K., Kawanobe, A., 2016. Deep Feature Extraction from Trajectories for Transportation Mode Estimation. 2016.
Endo, Y., Toda, H., Nishida, K., Kawanobe, A., 2016. Deep Feature Extraction from Trajectories for Transportation Mode Estimation.
Gadziński, 2018, Perspectives of the Use of Smartphones in Travel Behaviour Studies: Findings from a Literature Review and a Pilot Study, Transport. Res. Part C: Emerg. Technol., 10.1016/j.trc.2018.01.011
Gonzalez, 2010, Automating mode detection for travel behaviour analysis by using global positioning systems-enabled mobile phones and neural networks, IET Intel. Transport Syst., 10.1049/iet-its.2009.0029
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative Adversarial Nets.
Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G. Learning from class-imbalanced data: review of methods and applications. Exp. Syst. Appl.
He, 2009, Learning from Imbalanced Data, IEEE Trans. Knowl. Data Eng.
Huang, 2019, Transport mode detection based on mobile phone network data: a systematic review, Transport. Res. Part C: Emerg. Technol., 10.1016/j.trc.2019.02.008
Jahangiri, 2015, Applying machine learning techniques to transportation mode recognition using mobile phone sensor data, IEEE Trans. Intell. Transp. Syst., 10.1109/TITS.2015.2405759
Lari, A., 2015. Automated Transportation Mode Detection Using Smart Phone Applications via Machine Learning: Case Study Mega City of Tehran. In: Transportation Research Board 94th Annual Meeting, 2015.
Li, 2016, Short-term highway traffic flow prediction based on a hybrid strategy considering temporal-spatialInformation, J. Adv. Transport., 50, pp, 10.1002/atr.1443
Li, 2018, Missing value imputation for traffic-related time series data based on a multi-view learning method, IEEE Trans. Intell. Transp. Syst.
Li, 2019, Day-optimized by the multi-objective particle swarm ahead traffic flow forecasting based on a deep belief network algorithm, Knowl.-Based Syst., 172, 1, 10.1016/j.knosys.2019.01.015
Li, 2019, Traffic speed prediction for intelligent transportation system based on a deep feature fusion model, J. Intell. Transport. Syst., 1
Ma, 2017, Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction, Sensors (Switzerland), 10.3390/s17040818
Nitsche, 2014, Supporting large-scale travel surveys with smartphones - a practical approach, Transport. Res. Part C: Emerg. Technol., 10.1016/j.trc.2013.11.005
Stenneth, L., Wolfson, O., Yu, P.S., Xu, B., 2011. Transportation Mode Detection Using Mobile Phones and GIS Information.
Stopher, 2007, Household travel surveys: where are we going?, Transport. Res. Part A: Policy Pract., 41, 367
Tang, 2006, An analysis of diversity measures, Mach. Learn., 65, 247, 10.1007/s10994-006-9449-2
Wu, L., Yang, B., Jing, P. Travel Mode Detection Based on GPS Raw Data Collected by Smartphones: A Systematic Review of the Existing Methodologies. Information (Switzerland).
Xiao, G., Juan, Z., Zhang, C., 2015. Travel Mode Detection Based on GPS Track Data and Bayesian Networks. Computers, Environment and Urban Systems, 2015. https://doi.org/10.1016/j.compenvurbsys.2015.05.005.
Yang, X., Stewart, K., Tang, L., Xie, Z., Li, Q. A Review of GPS Trajectories Classification Based on Transportation Mode. Sensors (Switzerland).
Yang, 2015, GPS and Acceleration Data in Multimode Trip Data Recognition Based on Wavelet Transform Modulus Maximum Algorithm, Transport. Res. Rec.: J. Transport. Res. Board, 10.3141/2526-10
Zhang, 2019, Classifying transportation mode and speed from trajectory data via deep multi-scale learning, Comput. Netw., 10.1016/j.comnet.2019.106861
Zheng, Y., Liu, L., Wang, L., Xie, X., 2008. Learning Transportation Mode from Raw Gps Data for Geographic Applications on the Web.
Zheng, 2010, Understanding Transportation Modes Based on GPS Data for Web Applications, ACM Trans. Web, 10.1145/1658373.1658374
Zheng, Y., Fu, H. Geolife GPS Trajectory Dataset - User Guide. Geolife GPS trajectories 1.1.
Zhong, 2018, Analyzing Passenger Travel Demand Related to the Transportation Hub inside a City Area Using Mobile Phone Data, Transp. Res. Rec., 2672, 23, 10.1177/0361198118774671
Zhu, Q., Zhu, M. Li, M., Fu, M., Huang, Z., Gan, Q., Zhou, Z., 2016. Identifying Transportation Modes from Raw GPS Data. 2016.