Coupled String-Beam Equations as a Model of Suspension Bridges

Pavel Drábek1, Herbert Leinfelder2, Gabriela Tajčová1
1Department of Mathematics, University of West Bohemia, Plzeň, Czech Republic
2Laboratory of Applied Mathemataics, Georg-Simon-Ohm-Fachhochschule Nűrnberg, University of Applied Science, Nuremberg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

J. M. Alonso, R. Ortega: Global asymptotic stability of a forced Newtonian system with dissipation. J. Math. Anal. Applications 196 (1995), 965–986.

J. Berkovits, P. Drábek, H. Leinfelder, V. Mustonen, G. Tajčová: Time-periodic oscillations in suspension bridges: existence of unique solutions. Nonlinear Analysis, Theory, Methods & Applications.

Q. H. Choi, K. Choi, T. Jung: The existence of solutions of a nonlinear suspension bridge equation. Bull. Korean Math. Soc. 33 (1996), 503–512.

P. Drábek: Jumping nonlinearities and mathematical models of suspension bridges. Acta Math. Inf. Univ. Ostraviensis 2 (1994), 9–18.

P. Drábek: Nonlinear noncoercive equations and applications. Z. Anal. Anwendungen 1 (1983), 53–65.

S. Fučik, A. Kufner: Nonlinear Differential Equations. Elsevier, Holland, 1980.

A. Fonda, Z. Schneider, F. Zanolin: Periodic oscillations for a nonlinear suspension bridge model. J. Comput. Appl. Math. 52 (1994), 113–140.

J. Glover, A. C. Lazer, P. J. McKenna: Existence and stability of large scale nonlinear oscillations in suspension bridges. J. Appl. Math. Physics (ZAMP) 40 (1989), 172–200.

A. Kufner, 0. John, S. Fucik: Function Spaces. Academia, Prague, 1977.

A. C. Lazer, P. J. McKenna: Fredholm theory for periodic solutions of some semilinear P.D.Es with homogeneous nonlinearities. Contemporary Math. 107 (1990), 109–122.

A. C. Lazer, P. J. McKenna: A semi-Fredholm principle for periodically forced systems with homogeneous nonlinearities. Proc. Amer. Math. Society 106 (1989), 119–125.

A. C. Lazer, P. J. McKenna: Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities. Trans. Amer. Math. Society 315 (1989), 721–739.

A. C. Lazer, P. J. McKenna: Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis. SIAM Review 32 (1990), 537–578.

A. C. Lazer, P. J. McKenna: Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare, Analyse non lineaire 4 (1987), 244–274.

P. J. McKenna, W. Walter: Nonlinear oscillations in a suspension bridge. Arch. Rational Mech. Anal. 98 (1987), 167–177.

M. H. Protter, H. F. Weinberger: Maximum Principles in Differential Equations. Springer-Verlag New York, 1984.

G. Tajčova: Mathematical models of suspension bridges. Appl. Math. 42 (1997), 451–480.

O. Vejvoda et al: Partial Differential Equations—time periodic solutions. Sijthoff Nordhoff, The Netherlands, 1981.

J. Weidmann: Linear Operators in Hilbert Spaces. Springer-Verlag, New York-Heidelberg-Berlin 1980.