Count Data Modeling and Classification Using Finite Mixtures of Distributions

IEEE Transactions on Neural Networks - Tập 22 Số 2 - Trang 186-198 - 2011
Nizar Bouguila1
1Concordia Institute for Information Systems Engineering, Concordia University, Montréal, QC, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1109/72.329683

10.2307/2291091

10.1016/S0893-6080(97)00133-0

10.1007/s10994-006-6540-7

10.1109/5.726788

10.1103/PhysRevA.45.6056

10.1109/TPAMI.2007.1095

10.1109/TNN.2009.2034851

10.1109/TNN.2010.2040835

graybill, 1983, Matrices with Applications in Statistics

aitchison, 1990, The Statistical Analysis of Compositional Data

10.1007/s11222-006-8451-7

mclachlan, 1997, The EM Algorithm and Extensions

10.1109/TKDE.2009.42

10.1017/CBO9780511812651

10.1109/ICASSP.2007.366067

10.1007/s10618-008-0101-6

plya, 1930, Sur quelques points de la théorie des probabilités, Ann Inst Henri Poincare?, 1, 117

10.1007/978-1-4899-2937-2

10.1016/j.patcog.2008.06.022

10.1016/0047-259X(87)90155-2

10.1137/0141015

dana, 1999, reflectance and texture of real-world surfaces, ACM Trans Graph, 18, 1, 10.1145/300776.300778

10.1023/A:1008045108935

jeannin, 1999, Description of core experiments for MPEG-7 motion/shape

10.1109/5.726791

10.1109/MLSP.2008.4685450

jaakkola, 1998, exploiting generative models in discriminative classifiers, Proc 12th Annu Conf Neural Inform Process Syst, 487

10.1109/34.993558

10.1016/S0925-2312(98)00130-1

10.1023/B:VISI.0000029664.99615.94

10.1109/MLSP.2004.1422956

10.1145/1102351.1102420

10.1109/72.134286

10.1016/j.jvcir.2007.02.005

10.1016/j.ipm.2009.05.005

margaritis, 2001, a bayesian multiresolution independence test for continuous variables, Proc 7th Conf Uncertainty Artif Intell, 346

hooper, 2004, dependent dirichlet priors and optimal linear estimators for belief net parameters, Proc 10th Conf Uncertainty Artif Intell, 251

albert, 1983, bayesian estimation methods for 2<formula formulatype="inline"> <tex notation="tex">$\,\times\,$</tex></formula>2 contingency tables using mixtures of dirichlet distributions, J Amer Statist Assoc, 78, 708

10.1023/A:1020202028934

10.1109/TKDE.2007.190726

10.1145/1143844.1143881

10.1109/72.97913

mclachlan, 2000, Finite Mixture Models, 10.1002/0471721182

10.1162/neco.1989.1.3.295

ueda, 2002, parametric mixture models for multi-labeled text, Proc 16th Annu Conf Neural Inform Process Syst, 721

eyheramendy, 2003, On the na&#x00EF;ve Bayes model for text categorization, Proc 9th Int Workshop Artif Intell Statist, 1

10.1038/290091a0

tirri, 1996, Probabilistic instance-based learning, Proc 13th Int Conf Mach Learn, 507

mccallum, 1998, A comparison of event models for na&#x00EF;ve Bayes text classification, Proc AAAI Workshop Learn Text Categorization, 41

tuceryan, 1998, The Handbook of Pattern Recognition and Computer Vision, 207

10.1109/TPAMI.1981.4767084

10.1109/TPAMI.2005.151

10.1007/s11263-006-9794-4

10.1017/CBO9780511809071

10.1016/0005-1098(78)90005-5

hayman, 2004, on the significance of real-world conditions for material classification, Proc 8th Eur Conf Comput Vis, 253

10.1109/CVPR.2003.1211534