Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Compost Trồng Bông từ Cành Bông như một Biện Pháp Thay Thế cho Phân Bón Hữu Cơ Kèm theo Phân Khoáng và Vi Sinh Vật Tăng Năng Suất Bông Bt và Chất Lượng Sợi trên Đất Vertisol Tưới Nước Mưa
Tóm tắt
Cành bông, còn lại sau khi thu hoạch bông, được coi là chất thải và thường được xử lý bằng cách đốt. Hiện nay, nguồn cung phân bón chất lượng tốt như phân chuồng (FYM) đang ở mức thấp. Do đó, việc tái chế cành bông thành phân compost có thể giảm sự phụ thuộc vào FYM, bên cạnh việc giảm sử dụng phân vô cơ và cải thiện sức khỏe đất. Một số nghiên cứu đã báo cáo về việc chuyển đổi chất thải từ nhà máy xay bông thành phân bón hữu cơ. Tuy nhiên, chưa có nghiên cứu nào báo cáo về việc ủ cành bông. Chúng tôi đã thực hiện các nghiên cứu thực địa trong ba năm trên đất Vertisol để đánh giá tác động của việc sử dụng tích hợp phân compost có vi sinh vật được làm giàu từ cành bông (ECC) như một phương án thay thế cho FYM cùng với phân khoáng trong sản xuất bông. Thêm vào đó, chúng tôi đã đánh giá một phương án sử dụng các quần xã vi sinh vật bản địa để xử lý hạt giống và nghiên cứu hiệu ứng hiệp đồng của chúng cùng với việc áp dụng ECC lên năng suất bông, chất lượng sợi và các thuộc tính của đất. Kết quả cho thấy việc thay thế FYM bằng ECC trong quản lý dinh dưỡng tích hợp (INM) tạo ra hiệu ứng tương tự như việc sử dụng FYM trong việc nâng cao năng suất bông, chất lượng sợi và các thuộc tính của đất. Việc áp dụng ECC + phân vô cơ (được gọi là thực hành quản lý dinh dưỡng điều chỉnh - MINM) làm tăng số lượng quả (8.4%) và trọng lượng quả (9.9%) so với liều phân bón khuyến nghị (RDF). Việc xử lý hạt giống bông bằng các quần xã vi sinh vật đã tăng năng suất bông hạt (SCY) lên 12.8% (2815 kg ha−1) so với lô giống không xử lý (2496 kg ha−1). Khối lượng trung bình qua các năm, INM (3344 kg ha−1) tiếp theo là MINM (3190 kg ha−1) ghi nhận năng suất bông hạt (SCY) cao hơn đáng kể so với RDF (2835 kg ha−1), với mức tăng lần lượt là 18% và 13%. Thực hành MINM đã cải thiện các thuộc tính sợi bông (chiều dài bông và độ bền bó), tình trạng dinh dưỡng của đất (đinh dưỡng chính, thứ cấp và vi lượng), cùng với các hoạt động sinh học (carbon sinh khối vi sinh vật và enzym đất), nằm ở mức tương đương với INM. Việc sử dụng ECC trong INM ước tính có thể giảm 33% chi phí cho các loại phân nitơ, photpho và kali, và có thể tiết kiệm khoảng 38 USD mỗi ha cho phân vô cơ và phân bón trong liều khuyến nghị của phân bón (RDF) và thực hành INM.
Từ khóa
Tài liệu tham khảo
Bhattacharjya, S., Sahu, A., Manna, M.C., Patra, A.K.: Potential of surplus crop residues, horticultural waste and animal excreta as a nutrient source in the central and western regions of India. Curr. Sci. 116, 1314–1323 (2019)
Kuna, E., Behling, R., Valange, S., Chatel, G., Colmenares, J.C.: Sonocatalysis: A potential sustainable pathway for the valorization of lignocellulosic biomass and derivatives. In: Lin, C. (ed.) Chemistry and Chemical Technologies in Waste Valorization. Topics in Current Chemistry Collections, pp. 1–20. Springer, Cham (2017)
Blaise, D., Ravindran, C.D.: Influence of tillage and residue management on growth and yield of cotton grown over 5 years in a semi-arid region of central India. Soil Tillage Res. 70, 163–173 (2003)
Jamali, M., Bakhshandeh, E., Yaghoubi Khanghahi, M., Crecchio, C.: Metadata analysis to evaluate environmental impacts of wheat residues burning on soil quality in developing and developed countries. Sustainability 13, 6356 (2021)
Ray, S.K., Bhattacharyya, T., Reddy, K.R., Pal, D.K., Chandran, P., Tiwary, P., et al.: Soil and land quality indicators of the Indo-Gangetic Plains of India. Curr. Sci. 107, 1470–1486 (2014)
Blaise, D., Ravindran, C.D., Singh, J.V.: Trends and stability analyses to interpret results of long-term effects of application of fertilizers and manure to rainfed cotton. J. Agron. Crop Sci. 192, 319–330 (2006)
Reddy, A.R., Blaise, D., Anuradha, N.: Cost escalation in cotton cultivation: an analysis. Econ. Aff. 63, 833–838 (2018)
Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., Pal, D.K., Mandal, D.K., et al.: Soil information system: use and potentials in humid and semi-arid tropics. Curr. Sci. 107, 1550–1564 (2014)
Sidhu, G.S., Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., Pal, D.K., et al.: Impact of management levels and land-use changes on soil properties in rice-wheat cropping system of the Indo-Gangetic Plains. Curr. Sci. 107, 1487–1501 (2014)
Mandal, C., Mandal, D.K., Bhattacharyya, T., Sarkar, D., Pal, D.K., Prasad, J., et al.: Revisiting agro-ecological sub-regions of India—a case study of two major food production zones. Curr. Sci. 107, 1519–1536 (2014)
Velmourougane, K., Blaise, D.: Soil health, crop productivity and sustainability challenges. In: Bhat, R. (ed.) Sustainability Challenges in the Agrofood Sector, pp. 509–531. Wiley, New York (2017)
Sayara, T., Basheer-Salimia, R., Hawamde, F., Sánchez, A.: Recycling of organic wastes through composting: process performance and compost application in agriculture. Agronomy 10, 1838 (2020)
Isci, A., Demirer, G.N.: Biogas production potential from cotton wastes. Renew. Energy. 32, 750–757 (2007)
Mandhyan, P.K., Patil, P.G., Sankaranarayanan, K., et al.: Cotton value chain. Cotton Res. J. 7, 17–35 (2016)
Sharma-Shivappa, R.R., Chen, Y.: Conversion of cotton wastes to bioenergy and value-added products. Trans. ASABE. 51, 2239–2246 (2008)
Zhang, P.P., Xu, S.Z., Zhang, G.J., Pu, X.Z., Wand, J., Zhang, W.: Carbon cycle in response to residue management and fertilizer application in a cotton field in arid Northwest China. J. Integr. Agric. 18, 1103–1119 (2019)
Balasubramanya, R.H., Shaikh, A.J., Sreenivasan, S.: Cotton crop and industry waste. In: Chadha, K.L., Swaminathan, M.S. (eds.) Environment and Agriculture. Malhotra Publishing House, New Delhi (2008)
Jain, N., Bhatia, A., Pathak, H.: Emission of air pollutants from crop residue burning in India. Aerosol Air Qual. Res. 14, 422–430 (2014)
Guo, X.X., Liu, H.T., Zhang, J.: The role of biochar in organic waste composting and soil improvement: a review. Waste Manage. 102, 884–899 (2020)
Zhao, Z., Zhang, C., Li, F., Gao, S., Zhang, J.: Effect of compost and inorganic fertilizer on organic carbon and activities of carbon cycle enzymes in aggregates of an intensively cultivated Vertisol. PLoS ONE 15, e0229644 (2020)
Hulugalle, N.R., Scott, F.: A review of the changes in soil quality and profitability accomplished by sowing rotation crops after cotton in Australian Vertosols from 1970 to 2006. Aust. J. Soil Res. 46, 173–190 (2008)
Sandell, G.R., Hopf, J., Chen, G., Yusaf, T.: The Feasibility and Development of Alternative Energy Sources for Cotton. National Centre for Engineering in Agriculture, USQ, Toowoomba (2014)
Ghosh, S., Hulugalle, N., Lockwood, P., Daniel, H., Mccorkell, B.E.: Applying composted cotton gin trash to a vertisol in Southeastern Queensland, Australia. Commun. Soil Sci. Plant Anal. 42, 1855–1861 (2011)
Egbuta, M.A., McIntosh, S., Waters, D.L.E., Vancov, T., Liu, L.: Biological importance of cotton by-products relative to chemical constituents of the cotton plant. Molecules 22, 93 (2017)
Mageshwaran, V., Kathe, A.A., Ashtaputre, N.M., et al.: Accelerated process for the preparation of bioenriched compost from cotton plant stalks. Cotton Res. J. 4, 104–113 (2013)
Velmourougane, K., Prasanna, R., Chawla, G., Nain, L., Kumar, A., Saxena, A.K.: Trichoderma-Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. J. Basic Microbiol. 59, 632–644 (2019)
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., Meftah Kadmiri, I.: Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 12, 628379 (2021)
Klute, A., Dirksen, C.: Hydraulic conductivity diffusivity: laboratory methods. In: Klute, A. (ed.) Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Agronomy Monograph No. 9, 2nd edn., pp. 687–734. ASA, Madison (1986)
Richards, L.A.: Diagnosis and improvement of saline and alkali soils. In: USDA Agriculture Handbook 60. USDA, Washington DC (1954)
Subbiah, B.V., Asija, G.L.: A rapid procedure for the determination of available nitrogen in soils. Curr. Sci. 25, 259–260 (1956)
Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A.: Estimation of available P. USDA. Circular 939, 1–19 (1954)
Jankowski, S.J., Freiser, H.: Flame photometric methods of determining the potassium tetraphenylborate. Anal. Chem. 33, 773–775 (1961)
Jackson, M.L.: Soil Chemical Analysis. Prentice-Hall of India Pvt Ltd, New Delhi (1973)
Lindsay, W.L., Norvell, W.A.: Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 42, 421–428 (1978)
Vance, E.D., Brookes, P.C., Jenkinson, D.S.: An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987)
Casida, L.E., Klein, D.A., Santoro, T.: Soil dehydrogenase activity. Soil Sci. 98, 371–376 (1964)
Tabatabai, M.A.: Soil enzymes. In: Weaver, R.W., et al. (eds.) Methods of Soil Analysis: Part 2. Microbiological and Biochemical Properties of Soils, pp. 775–833. Soil Science Society of America, Madison (1994)
Blaise, D., Rupa, T.R., Bonde, A.N.: Effect of organic and modern method of cotton cultivation on soil nutrient status. Commun. Soil Sci. Plant Anal. 35, 1247–1261 (2004)
Das, A., Prasad, M., Shivay, Y.S., Subha, K.M.: Productivity and sustainability of cotton (Gossypium hirsutum L.)-wheat (Triticum aestivum L.) cropping system as influenced by prilled urea, farmyard manure and Azotobacter. J. Agron. Crop Sci. 190, 298–304 (2004)
Blaise, D., Bonde, A.N., Chaudhary, R.S.: Nutrient uptake and balance of cotton + pigeonpea strip intercropping on rainfed vertisols of central India. Nutr. Cycl. Agroecosyst. 73, 135–145 (2005)
Sridevi, S., Ramakrishnan, K.: The effect of NPK fertilizer and AM fungi on the growth and yield of cotton (Gossypium hirsutum L.) Var. LRA 5166. Recent Res. Sci. Technol. 2, 39–41 (2010)
Khaliq, A., Abbasi, M.K., Hussain, T.: Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour. Technol. 97, 967–972 (2006)
Vora, V.D., Rakholiya, K.D., Rupapara, K.V., Sutaria, G.S., Akbari, K.N.: Effect of integrated nutrient management on Bt cotton and post harvest soil fertility under dry farming agriculture. Asian J. Agric. Res. 9, 350–356 (2015)
Bradow, J.M., Davidonis, G.H.: Effects of environment on fiber quality. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds.) Physiology of Cotton, pp. 229–245. Springer, Dordrecht (2010)
Constable, G.A., Bange, M.P.: Producing and preserving fiber quality: from the seed to the bale. Agron. J. 95, 1323 (2007)
Girma, K., Teal, R.K., Freeman, K.W., Boman, R.K., Raun, W.R.: Cotton lint yield and quality as affected by applications of N, P, and K fertilizers. J. Cotton Sci. 11, 12–19 (2007)
Ritz, K., Black, H.I.J., Campbell, C.D., Harris, J.A., Wood, C.: Selecting biological indicators for monitoring soils: a framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 9, 1212–1221 (2009)
Vallejo, V.E., Roldan, F., Dick, R.P.: Soil enzymatic activities and microbial biomass in an integrated agroforestry chronosequence compared to monoculture and a native forest of Colombia. Biol. Fertil. Soils. 46, 577–587 (2010)
Velmourougane, K., Sahu, A.: Impact of transgenic cottons expressing cry1Ac on soil biological attributes. Plant Soil Environ. 59, 108–114 (2013)
Velmourougane, K., Venugopalan, M.V., Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., et al.: Impacts of bioclimates, cropping systems, land use and management on the cultural microbial population in black soil regions of India. Curr. Sci. 107, 1452–1463 (2014)
Lupwayi, N.Z., Zhang, Y., Hao, X., Thomas, B.W., Eastman, A.H., Schwinghamer, T.D.: Linking soil microbial biomass and enzyme activities to long-term manure applications and their nonlinear legacy. Pedobiologia 74, 34–42 (2019)
Nannipieri, P., Trasar-Cepeda, C., Dick, R.P.: Soil enzyme activity: a brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 54, 11–19 (2018)
Anderson, T.H., Domsch, K.H.: Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21, 471–479 (1989)
Yu, H., Ding, W., Luo, J., Geng, R., Ghani, A., Cai, Z.: Effects of long-term compost and fertilizer application on stability of aggregate-associated organic carbon in an intensively cultivated sandy loam soil. Biol. Fertil. Soils 48, 325–336 (2012)
Rao, D.: Microbial diversity, soil health and sustainability. J. Indian Soc. Soil Sci. 55, 392–403 (2007)
Wani, S.P., Pathak, P., Jangawad, L.S., Eswaran, H., Singh, P.: Improved management of Vertisols in the semiarid tropics for increased productivity and soil carbon sequestration. Soil Use Manage. 19, 217–222 (2003)
Chakraborty, A., Chakrabarti, K., Chakraborty, A., Ghosh, S.: Effect of long-term fertilizers and manure application on microbial biomass and microbial activity of a tropical agricultural soil. Biol. Fertil. Soils. 47, 227–233 (2011)
Goyal, S., Mishra, M.M., Dhankar, S.S., et al.: Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long-term applications. Biol. Fertil. Soils 15, 60–64 (1993)
Böhme, L., Langer, U., Böhme, F.: Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 109, 141–152 (2005)
Ebhin Masto, R., Chhonkar, P.K., Singh, D., Patra, A.K.: Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol. Biochem. 38, 1577–1582 (2006)
Rupela, O.P., Gowda, C.L.L., Wani, S.P., Bee, H.: Evaluation of crop production systems based on locally-available biological inputs. In: Uphoff, N., et al. (eds.) Biological Approaches to Sustainable Soil Systems, pp. 501–515. CRC Press, Boca Raton (2005)
Nannipieri, P., Giagnoni, L., Renella, G., Puglisi, E., Ceccanti, B., Masciandaro, G., Fornasier, F., Moscatelli, M.C., Marinari, S.: Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils. 48, 743–762 (2012)
Singh, R.J., Ahlawat, I.P.S., Singh, S.: Effects of transgenic Bt cotton on soil fertility and biology under field conditions in subtropical inceptisol. Environ. Monit. Assess. 185, 485–495 (2013)
Velmourougane, K., Venugopalan, M.V., Bhattacharyya, T., Sarkar, D., Pal, D.K., Sahu, A., Ray, S.K., Nair, K.M., Prasad, J., Singh, R.S.: Soil dehydrogenase activity in agro-ecological sub regions of black soil regions in India. Geoderma 197–198, 186–192 (2013)
Włodarczyk, T., Stȩpniewski, W., Brzezińska, M.: Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biol. Fertil. Soils 36, 200–206 (2002)
Furczak, J., Joniec, J.: Changes in biochemical activity of podzolic soil under willow culture in the second year of treatment with municipal-industrial sewage sludge. Int. Agrophys. 21, 145–152 (2007)
Prasad, R., Mertia, R.S.: Dehydrogenase activity and VAM fungi in tree-rhizosphere of agroforestry systems in Indian arid zone. Agrofor. Syst. 63, 219–223 (2005)
Margalef, O., Sardans, J., Fernández-Martínez, M., Molowny-Horas, R., Janssens, I.A., Ciais, P., Goll, D., Richter, A., Obersteiner, M., Asensio, D., Peñuelas, J.: Global patterns of phosphatase activity in natural soils. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-01418-8
Błońska, E., Lasota, J.: β-Glucosidase activity of forest soil as an indicator of soil carbon accumulation. In: Soil Biological Communities and Ecosystem Resilience, pp. 253–263. Springer, Cham (2017)
Bhattacharyya, T., Sarkar, D., Ray, S.K., Chandran, P., Pal, D.K., Mandal, D.K., et al.: Georeferenced soil information system: assessment of database. Curr. Sci. 107, 1400–1419 (2014)
DeLong, C., Cruse, R., Wiener, J.: The soil degradation paradox: compromising our resources when we need them the most. Sustainability 7, 866–879 (2015)
Duong, T.T.T., Penfold, C., Marschner, P.: Amending soils of different texture with six compost types: Impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil 354, 197–209 (2012)
Duong, T.T.T., Verma, S.L., Penfold, C., Marschner, P.: Nutrient release from composts into the surrounding soil. Geoderma 195–196, 42–47 (2013)
Masmoudi, S., Magdich, S., Rigane, H., Medhioub, K., Rebai, A., Ammar, E.: Effects of compost and manure application rate on the soil physico-chemical layers properties and plant productivity. Waste Biomass Valori 11, 1883–1894 (2020)
Adesemoye, A.O., Torbert, H.A., Kloepper, J.W.: Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can. J. Microbiol. 54, 876–886 (2008)
Kumar, A., Patel, J.S., Meena, V.S., Ramteke, P.W.: Plant growth-promoting rhizobacteria: strategies to improve abiotic stresses under sustainable agriculture. J. Plant Nutr. 42, 1402–1415 (2019)
Kranthi, K.R.: Cotton production systems—need for a change in India. Cotton Stat. News 38, 4–7 (2014)
Venugopalan, M.V., Reddy, A.R., Kranthi, K.R., Yadav, M.S., Vandana, S., Dhanashree, P.: A decade of Bt cotton in India: land use changes and other socio-economic consequences. In: Obi Reddy, G.P., Patil, N.G., Chaturvedi, A. (eds.) Sustainable Management of Land Resources: An Indian perspecTive. Apple Academic Press Inc, New Jersey (2017)