Cost function approach to water protection in forestry

Water Resources and Economics - Tập 31 - Trang 100150 - 2020
Jenni Miettinen1, Markku Ollikainen1, Mika Nieminen2, Lauri Valsta3
1University of Helsinki, Department of Economics and Management, P.O. Box 27, 00014 University of Helsinki, Finland
2Natural Resources Institute Finland, Latokartanonkaari 9 00790 Helsinki, Finland
3University of Helsinki, Department of Forest Sciences, P. O. Box 27, 00014 University of Helsinki, Finland

Tài liệu tham khảo

Baumol, 1988, 299 Finér, 2010, Metsäisten Valuma-Alueiden Vesistökuormituksen Laskenta. Suomen Ympäristö 10. A Method for Calculating Nitrogen, Phosphorus and Sediment Load from Forest Catchments Finn. Environ., vol.10, 33 Nieminen, 2018, A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests, Ambio, 47, 523, 10.1007/s13280-017-0966-y Finér, 2018, Metsätalouden vesistökuormituksen seurantaverkko tuottaa uutta tietoa hajakuormituksesta, Vesitalous, 2/2018, 10 Ahtiainen, 1999, Long-term effects of forestry managements on water quality and loading in brooks, Boreal Environ. Res., 4, 101 Joensuu, 2002 Laurén, 2005, Water and nitrogen processes along a typical water flowpath and streamwater exports from a forested catchment and changes after clear-cutting: a modelling study, Hydrol. Earth Syst. Sci., 9, 657, 10.5194/hess-9-657-2005 Stednick, 2008 Laurén, 2009, Implications of uncertainty in pre-treatment dataset on estimation of treatment effects from paired catchment studies: loads of phosphorus from forest clear-cuts, Water. Air. Soil. Pollut., 196, 251, 10.1007/s11270-008-9773-1 Joensuu, 1999, The effects of peatland forest ditch maintenance on suspended solids in runoff, Boreal Environ. Res., 4, 343 Liljaniemi, 2003, Effectiveness of constructed overland flow areas in decreasing diffuse pollution from forest drainages, Environ. Manag., 32, 602, 10.1007/s00267-003-2927-4 Nieminen, 2005, Capacity of riparian buffer zones to reduce sediment concentrations in discharge from peatlands drained for forestry, Silva Fenn., 39, 331, 10.14214/sf.371 Väänänen, 2008, Retention of phosphorus in peatland buffer zones at six forested catchments in southern Finland, Silva Fenn., 42, 211, 10.14214/sf.253 Vikman, 2010, Nitrogen retention by peatland buffer areas at six forested catchments in southern and central Finland, Hydrobiologia, 641, 171, 10.1007/s10750-009-0079-0 Hynninen, 2011, Capacity of riparian buffer areas to reduce ammonium export originating from ditch network maintenance areas in peatlands drained for forestry, Boreal Environ. Res., 16, 430 Hautakangas, 2014, Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region, Ambio, 43, 352, 10.1007/s13280-013-0435-1 Lankoski, 2012 Helin, 2014, Reducing nutrient loads from dairy farms: a bioeconomic model with endogenous feeding and land use, Agric. Econ., 45, 167, 10.1111/agec.12039 Laukkanen, 2014, Evaluating greening farm policies: a structural model for assessing agri-environmental subsidies, Land Econ., 90, 458, 10.3368/le.90.3.458 Lötjönen, 2019, Multiple pollutant cost-efficiency: coherent water and climate policy for agriculture, Ambio, 10.1007/s13280-019-01257-z Laurén, 2007, Water protection and buffer zones: how much does it cost to reduce nitrogen load in a forest cutting?, Scand. J. For. Res., 22, 537, 10.1080/02827580701614487 Miller, 1975, The economic impact of controlling nonpoint pollution in hardwood forestland, Am. J. Agric. Econ., 57, 576, 10.2307/1238875 Matero, 1996, Costs of water pollution abatement in forestry, J. For. Econ., 2, 67 Matero, 2002, 138 Matero, 2004, Cost-effective measures for diffuse load abatement in forestry, Silva Fenn., 38, 333, 10.14214/sf.420 Matero, 1998, Monetary assessment of the impacts of forestry on water-based benefits in Finland, Boreal Environ. Res., 3, 87 Creedy, 2001, The economic value of a forested catchment with timber, water and carbon sequestration benefits, Ecol. Econ., 38, 71, 10.1016/S0921-8009(01)00148-3 Sun, 2006, Welfare effects of forestry best management practices in the United States, Can. J. For. Res., 36, 1674, 10.1139/x06-052 Eriksson, 2011, Implications for forest management of the EU Water Framework Directive's stream water quality requirements – a modeling approach, For. Policy Econ., 13, 284, 10.1016/j.forpol.2011.02.002 Miettinen, 2012, Diffuse load abatement with biodiversity co-benefits: the optimal rotation age and buffer zone size, For. Sci., 58, 342, 10.5849/forsci.10-070 Hökkä, 2017, Long-term impact of ditch network maintenance on timber production, profitability and environmental loads at regional level in Finland: a simulation study, Forestry: An International Journal of Forest Research, 90, 234 Miettinen, 2014, Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change. mitigation matter, For. Policy Econ., 47, 25, 10.1016/j.forpol.2013.08.005 Hjerppe, 2015, A practical tool for selecting cost-effective combinations of phosphorus loading mitigation measures in Finnish catchments, Int. J. River Basin Manag., 13, 363, 10.1080/15715124.2015.1012516 Lankoski, 2008, Point/Nonpoint effluent trading with spatial heterogeneity, Am. J. Agric. Econ., 90, 10.1111/j.1467-8276.2008.01172.x Mas-Colell, 1995, 127 Päivänen, 2012, vol. 3, 1 Nieminen, 2018, Increasing and decreasing nitrogen and phosphorus trends in runoff from drained peatland forests – is there a legacy effect of drainage or not? Water, Air, Soil Pollut., 229, 286, 10.1007/s11270-018-3945-4 Chang, 1983, Rotation age, management intensity, and the economic factors of timber production: do changes in stumpage price, interest rate, regeneration cost, and forest taxation matter?, For. Sci., 29, 267 Amacher, 1991, The effect of forest productivity taxes on timber stand investment and rotation length, For. Sci., 37, 1099 Tahvonen, 1999, Optimal forest rotation with in situ preferences, J. Environ. Econ. Manag., 37, 106, 10.1006/jeem.1998.1055 Wetzel, 2001 Finnish Forest Research Institute, 2014, 426 Natural Resources Institute Finland Official Statistics of Finland (OSF) Paananen, 2007 Joensuu, 2015 Hynynen, 2002, vol.835, 116 Salminen, 2005, Reusing legacy Fortran in the MOTTI growth and yield simulator, Comput. Electron. Agric., 49, 103, 10.1016/j.compag.2005.02.005 Hökkä, 1997 Hökkä, 2000, Predicting the need for ditch network maintenance in drained peatland sites in Finland, Suo - Mires, 51, 1 Hökkä, 2003, Suometsien kunnostusojitus – kasvureaktion tutkiminen ja kuvaus (Ditch network maintenance in peatland forests – growth response and it's description), vol.903, 13 Laine, 2005 2007 Joensuu, 2002, Effects of ditch network maintenance on the chemistry of run-off water from peatland forests, Scand. J. For. Res., 17, 238, 10.1080/028275802753742909 Nieminen, 2004, Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland, Silva Fenn., 38, 123, 10.14214/sf.422 Nieminen, 2015, Natural and restored wetland buffers in reducing sediment and nutrient export from forested catchment: Finnish experiences, 57 Nieminen, 2003, Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland, Boreal Environ. Res., 8, 53 Silvan, 2005, Hydraulic nutrient transport in a restored peatland buffer, Boreal Environ. Res., 10, 203 Sallantaus, 1998, 49, 125 Nieminen, 2018, Ditch network maintenance in peat-dominated boreal forests: review and analysis of water quality management options, Ambio, 47, 535, 10.1007/s13280-018-1047-6 Finnish Environment Institute Natural Resources Institute Finland National Land Survey of Finland, 2018 Gren, Elofsson, 1997, Cost-effective nutrient reductions to the Baltic Sea, Environ. Resour. Econ., 10, 341, 10.1023/A:1026497515871 Turner, 1999, Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study, Ecol. Econ., 30, 333, 10.1016/S0921-8009(99)00046-4 Helin, 2006, Abatement costs for agricultural nitrogen and phosphorus loads: a case study of crop farming in south-western Finland, Agric. Food Sci., 15, 351, 10.2137/145960606780061452 Iho, 2005, Does scale matter? Cost-effectiveness of agricultural nutrient abatement when target level varies, Agric. Food Sci., 14, 277, 10.2137/145960605775013191 Laukkanen, 2011, Environmental and production cost impacts of no-till in Finland: estimates from observed behavior, Land Econ., 87, 508, 10.3368/le.87.3.508 Gren, 2008, 2008 Elofsson, 2010, Cost-effectiveness of the Baltic Sea action plan, Mar. Policy, 34, 1043, 10.1016/j.marpol.2010.03.003 Gren, 2017, Credit stacking in nutrient trading markets for the Baltic Sea, Mar. Policy, 79, 1, 10.1016/j.marpol.2017.01.026 Wulff, 2014, Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment, Ambio, 43, 11, 10.1007/s13280-013-0484-5 Hautakangas, 2018, Nutrient trading between wastewater treatment plants in the Baltic Sea Region, Environ. Resour. Econ., 73, 533, 10.1007/s10640-018-0273-5 Lötjönen, 2017, Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?, Rev. Agric. Food, Environ. Stud., 98, 283, 10.1007/s41130-018-0063-z Nieminen, 2017, Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing, Sci. Total Environ., 609, 974, 10.1016/j.scitotenv.2017.07.210 Ollikainen, 2012, Uusia analyyseja ja välineitä Itämeren suojeluun (New analyses and tools for the protection of the Baltic Sea), vol.22, 134 Uusitalo, 2002, Dissolved reactive phosphorus in runoff assessed by soil extraction with an acetate buffer, Agric. Food Sci., 11, 343, 10.23986/afsci.5734 Saarela, 1995, Fosforilannoituksen porraskokeet 1977-1994: vuosittain annetun fosforimäärän vaikutus maan viljavuuteen ja peltokasvien satoon monivuotisissa kenttäkokeissa, Tiedote, 16/79