Cost function approach to water protection in forestry
Tài liệu tham khảo
Baumol, 1988, 299
Finér, 2010, Metsäisten Valuma-Alueiden Vesistökuormituksen Laskenta. Suomen Ympäristö 10. A Method for Calculating Nitrogen, Phosphorus and Sediment Load from Forest Catchments Finn. Environ., vol.10, 33
Nieminen, 2018, A synthesis of the impacts of ditch network maintenance on the quantity and quality of runoff from drained boreal peatland forests, Ambio, 47, 523, 10.1007/s13280-017-0966-y
Finér, 2018, Metsätalouden vesistökuormituksen seurantaverkko tuottaa uutta tietoa hajakuormituksesta, Vesitalous, 2/2018, 10
Ahtiainen, 1999, Long-term effects of forestry managements on water quality and loading in brooks, Boreal Environ. Res., 4, 101
Joensuu, 2002
Laurén, 2005, Water and nitrogen processes along a typical water flowpath and streamwater exports from a forested catchment and changes after clear-cutting: a modelling study, Hydrol. Earth Syst. Sci., 9, 657, 10.5194/hess-9-657-2005
Stednick, 2008
Laurén, 2009, Implications of uncertainty in pre-treatment dataset on estimation of treatment effects from paired catchment studies: loads of phosphorus from forest clear-cuts, Water. Air. Soil. Pollut., 196, 251, 10.1007/s11270-008-9773-1
Joensuu, 1999, The effects of peatland forest ditch maintenance on suspended solids in runoff, Boreal Environ. Res., 4, 343
Liljaniemi, 2003, Effectiveness of constructed overland flow areas in decreasing diffuse pollution from forest drainages, Environ. Manag., 32, 602, 10.1007/s00267-003-2927-4
Nieminen, 2005, Capacity of riparian buffer zones to reduce sediment concentrations in discharge from peatlands drained for forestry, Silva Fenn., 39, 331, 10.14214/sf.371
Väänänen, 2008, Retention of phosphorus in peatland buffer zones at six forested catchments in southern Finland, Silva Fenn., 42, 211, 10.14214/sf.253
Vikman, 2010, Nitrogen retention by peatland buffer areas at six forested catchments in southern and central Finland, Hydrobiologia, 641, 171, 10.1007/s10750-009-0079-0
Hynninen, 2011, Capacity of riparian buffer areas to reduce ammonium export originating from ditch network maintenance areas in peatlands drained for forestry, Boreal Environ. Res., 16, 430
Hautakangas, 2014, Nutrient abatement potential and abatement costs of waste water treatment plants in the Baltic Sea region, Ambio, 43, 352, 10.1007/s13280-013-0435-1
Lankoski, 2012
Helin, 2014, Reducing nutrient loads from dairy farms: a bioeconomic model with endogenous feeding and land use, Agric. Econ., 45, 167, 10.1111/agec.12039
Laukkanen, 2014, Evaluating greening farm policies: a structural model for assessing agri-environmental subsidies, Land Econ., 90, 458, 10.3368/le.90.3.458
Lötjönen, 2019, Multiple pollutant cost-efficiency: coherent water and climate policy for agriculture, Ambio, 10.1007/s13280-019-01257-z
Laurén, 2007, Water protection and buffer zones: how much does it cost to reduce nitrogen load in a forest cutting?, Scand. J. For. Res., 22, 537, 10.1080/02827580701614487
Miller, 1975, The economic impact of controlling nonpoint pollution in hardwood forestland, Am. J. Agric. Econ., 57, 576, 10.2307/1238875
Matero, 1996, Costs of water pollution abatement in forestry, J. For. Econ., 2, 67
Matero, 2002, 138
Matero, 2004, Cost-effective measures for diffuse load abatement in forestry, Silva Fenn., 38, 333, 10.14214/sf.420
Matero, 1998, Monetary assessment of the impacts of forestry on water-based benefits in Finland, Boreal Environ. Res., 3, 87
Creedy, 2001, The economic value of a forested catchment with timber, water and carbon sequestration benefits, Ecol. Econ., 38, 71, 10.1016/S0921-8009(01)00148-3
Sun, 2006, Welfare effects of forestry best management practices in the United States, Can. J. For. Res., 36, 1674, 10.1139/x06-052
Eriksson, 2011, Implications for forest management of the EU Water Framework Directive's stream water quality requirements – a modeling approach, For. Policy Econ., 13, 284, 10.1016/j.forpol.2011.02.002
Miettinen, 2012, Diffuse load abatement with biodiversity co-benefits: the optimal rotation age and buffer zone size, For. Sci., 58, 342, 10.5849/forsci.10-070
Hökkä, 2017, Long-term impact of ditch network maintenance on timber production, profitability and environmental loads at regional level in Finland: a simulation study, Forestry: An International Journal of Forest Research, 90, 234
Miettinen, 2014, Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands when water quality, biodiversity conservation and climate change. mitigation matter, For. Policy Econ., 47, 25, 10.1016/j.forpol.2013.08.005
Hjerppe, 2015, A practical tool for selecting cost-effective combinations of phosphorus loading mitigation measures in Finnish catchments, Int. J. River Basin Manag., 13, 363, 10.1080/15715124.2015.1012516
Lankoski, 2008, Point/Nonpoint effluent trading with spatial heterogeneity, Am. J. Agric. Econ., 90, 10.1111/j.1467-8276.2008.01172.x
Mas-Colell, 1995, 127
Päivänen, 2012, vol. 3, 1
Nieminen, 2018, Increasing and decreasing nitrogen and phosphorus trends in runoff from drained peatland forests – is there a legacy effect of drainage or not? Water, Air, Soil Pollut., 229, 286, 10.1007/s11270-018-3945-4
Chang, 1983, Rotation age, management intensity, and the economic factors of timber production: do changes in stumpage price, interest rate, regeneration cost, and forest taxation matter?, For. Sci., 29, 267
Amacher, 1991, The effect of forest productivity taxes on timber stand investment and rotation length, For. Sci., 37, 1099
Tahvonen, 1999, Optimal forest rotation with in situ preferences, J. Environ. Econ. Manag., 37, 106, 10.1006/jeem.1998.1055
Wetzel, 2001
Finnish Forest Research Institute, 2014, 426
Natural Resources Institute Finland
Official Statistics of Finland (OSF)
Paananen, 2007
Joensuu, 2015
Hynynen, 2002, vol.835, 116
Salminen, 2005, Reusing legacy Fortran in the MOTTI growth and yield simulator, Comput. Electron. Agric., 49, 103, 10.1016/j.compag.2005.02.005
Hökkä, 1997
Hökkä, 2000, Predicting the need for ditch network maintenance in drained peatland sites in Finland, Suo - Mires, 51, 1
Hökkä, 2003, Suometsien kunnostusojitus – kasvureaktion tutkiminen ja kuvaus (Ditch network maintenance in peatland forests – growth response and it's description), vol.903, 13
Laine, 2005
2007
Joensuu, 2002, Effects of ditch network maintenance on the chemistry of run-off water from peatland forests, Scand. J. For. Res., 17, 238, 10.1080/028275802753742909
Nieminen, 2004, Export of dissolved organic carbon, nitrogen and phosphorus following clear-cutting of three Norway spruce forests growing on drained peatlands in southern Finland, Silva Fenn., 38, 123, 10.14214/sf.422
Nieminen, 2015, Natural and restored wetland buffers in reducing sediment and nutrient export from forested catchment: Finnish experiences, 57
Nieminen, 2003, Effects of clear-cutting and site preparation on water quality from a drained Scots pine mire in southern Finland, Boreal Environ. Res., 8, 53
Silvan, 2005, Hydraulic nutrient transport in a restored peatland buffer, Boreal Environ. Res., 10, 203
Sallantaus, 1998, 49, 125
Nieminen, 2018, Ditch network maintenance in peat-dominated boreal forests: review and analysis of water quality management options, Ambio, 47, 535, 10.1007/s13280-018-1047-6
Finnish Environment Institute
Natural Resources Institute Finland
National Land Survey of Finland, 2018
Gren, Elofsson, 1997, Cost-effective nutrient reductions to the Baltic Sea, Environ. Resour. Econ., 10, 341, 10.1023/A:1026497515871
Turner, 1999, Managing nutrient fluxes and pollution in the Baltic: an interdisciplinary simulation study, Ecol. Econ., 30, 333, 10.1016/S0921-8009(99)00046-4
Helin, 2006, Abatement costs for agricultural nitrogen and phosphorus loads: a case study of crop farming in south-western Finland, Agric. Food Sci., 15, 351, 10.2137/145960606780061452
Iho, 2005, Does scale matter? Cost-effectiveness of agricultural nutrient abatement when target level varies, Agric. Food Sci., 14, 277, 10.2137/145960605775013191
Laukkanen, 2011, Environmental and production cost impacts of no-till in Finland: estimates from observed behavior, Land Econ., 87, 508, 10.3368/le.87.3.508
Gren, 2008, 2008
Elofsson, 2010, Cost-effectiveness of the Baltic Sea action plan, Mar. Policy, 34, 1043, 10.1016/j.marpol.2010.03.003
Gren, 2017, Credit stacking in nutrient trading markets for the Baltic Sea, Mar. Policy, 79, 1, 10.1016/j.marpol.2017.01.026
Wulff, 2014, Reduction of Baltic Sea nutrient inputs and allocation of abatement costs within the Baltic Sea catchment, Ambio, 43, 11, 10.1007/s13280-013-0484-5
Hautakangas, 2018, Nutrient trading between wastewater treatment plants in the Baltic Sea Region, Environ. Resour. Econ., 73, 533, 10.1007/s10640-018-0273-5
Lötjönen, 2017, Does crop rotation with legumes provide an efficient means to reduce nutrient loads and GHG emissions?, Rev. Agric. Food, Environ. Stud., 98, 283, 10.1007/s41130-018-0063-z
Nieminen, 2017, Nitrogen and phosphorus concentrations in discharge from drained peatland forests are increasing, Sci. Total Environ., 609, 974, 10.1016/j.scitotenv.2017.07.210
Ollikainen, 2012, Uusia analyyseja ja välineitä Itämeren suojeluun (New analyses and tools for the protection of the Baltic Sea), vol.22, 134
Uusitalo, 2002, Dissolved reactive phosphorus in runoff assessed by soil extraction with an acetate buffer, Agric. Food Sci., 11, 343, 10.23986/afsci.5734
Saarela, 1995, Fosforilannoituksen porraskokeet 1977-1994: vuosittain annetun fosforimäärän vaikutus maan viljavuuteen ja peltokasvien satoon monivuotisissa kenttäkokeissa, Tiedote, 16/79