Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm
Tài liệu tham khảo
CIWMB, 2000
Damtoft, 2008, Sustainable development and climate change initiatives, Cem. Concr. Res., 38, 115, 10.1016/j.cemconres.2007.09.008
Worrell, 2001, Carbon dioxide emissions from the global cement industry, Annu. Rev. Energy Environ., 26, 303, 10.1146/annurev.energy.26.1.303
Collins, 2010, Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint, Int. J. Life Cycle Assess., 15, 549, 10.1007/s11367-010-0191-4
Yellishetty, 2011, Environmental life-cycle comparisons of steel production and recycling: sustainability issues, problems and prospects, Environ. Sci. Policy, 14, 650, 10.1016/j.envsci.2011.04.008
Gartner, 2004, Industrially interesting approaches to “low-CO2” cements, Cem. Concr. Res., 34, 1489, 10.1016/j.cemconres.2004.01.021
García-Segura, 2014, Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability, Int. J. Life Cycle Assess., 19, 3, 10.1007/s11367-013-0614-0
Wong, 2013, Toward low-carbon construction processes: the visualisation of predicted emission via virtual prototyping technology, Autom. Constr., 33, 72, 10.1016/j.autcon.2012.09.014
Hasanbeigi, 2012, Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: a technical review, Renew. Sust. Energ. Rev., 16, 6220, 10.1016/j.rser.2012.07.019
Flower, 2007, Greenhouse gas emissions due to concrete manufacture, Int. J. Life Cycle Assess., 12, 282, 10.1007/s11367-007-0327-3
Turner, 2013, Carbon dioxide equivalent (CO2−e) emissions: a comparison between geopolymer and OPC cement concrete, Constr. Build. Mater., 43, 125, 10.1016/j.conbuildmat.2013.01.023
Goedkoop, 2001, The Ecoindicator 99: a damage oriented method for life cycle impact assessment
Alcorn, 2003
Payá-Zaforteza, 2009, CO2-optimization of reinforced concrete frames by simulated annealing, Eng. Struct., 31, 1501, 10.1016/j.engstruct.2009.02.034
Yepes, 2012, CO2-optimization design of reinforced concrete retaining walls based on a VNS-threshold acceptance strategy, J. Comput. Civ. Eng., 26, 378, 10.1061/(ASCE)CP.1943-5487.0000140
Camp, 2013, CO2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm, Struct. Multidiscip. Optim., 48, 411, 10.1007/s00158-013-0897-6
Camp, 2013, CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm, Eng. Struct., 48, 363, 10.1016/j.engstruct.2012.09.004
Park, 2013, Cost and CO2 emission optimization of steel reinforced concrete columns in high-rise buildings, Energies, 6, 5609, 10.3390/en6115609
Yeo, 2014, Sustainable design of reinforced concrete structures through CO2 emission optimization, J. Struct. Eng., B4014002, 1
Medeiros, 2014, Optimization of reinforced concrete columns according to different environmental impact assessment parameters, Eng. Struct., 59, 185, 10.1016/j.engstruct.2013.10.045
Fernandez-Ceniceros, 2013, Decision support model for one-way floor slab design: a sustainable approach, Autom. Constr., 35, 460, 10.1016/j.autcon.2013.06.002
Yee, 2001, Social and environmental benefits of precast concrete technology, PCI J., 46, 14, 10.15554/pcij.05012001.14.19
Horvath, 1998, Steel versus steel-reinforced concrete bridges: environmental assessment, J. Infrastruct. Syst., 4, 111, 10.1061/(ASCE)1076-0342(1998)4:3(111)
Kirch, 1973, Optimized prestressing by linear programming, Int. J. Numer. Methods Eng., 7, 125, 10.1002/nme.1620070204
Hernández, 2010, VTOP. An improved software for design optimization of prestressed concrete beams, Adv. Eng. Softw., 41, 415, 10.1016/j.advengsoft.2009.03.009
Ohkubo, 1998, An approach to multicriteria fuzzy optimization of a prestressed concrete bridge system considering cost and aesthetic feeling, Struct. Optim., 15, 132, 10.1007/BF01278499
Sirca, 2005, Cost optimization of prestressed concrete bridges, J. Struct. Eng., 131, 380, 10.1061/(ASCE)0733-9445(2005)131:3(380)
Ahsan, 2012, Cost optimum design of posttensioned I-girder bridge using global optimization algorithm, J. Struct. Eng., 138, 273, 10.1061/(ASCE)ST.1943-541X.0000458
Martí, 2013, Design of prestressed concrete precast road bridges with hybrid simulated annealing, Eng. Struct., 48, 342, 10.1016/j.engstruct.2012.09.014
El Semelawy, 2012, Design of prestressed concrete flat using modern heuristic optimization techniques, Expert Syst. Appl., 39, 5758, 10.1016/j.eswa.2011.11.093
Perea, 2008, Design of reinforced concrete bridge frames by heuristic optimization, Adv. Eng. Softw., 39, 676, 10.1016/j.advengsoft.2007.07.007
Yepes, 2008, A parametric study of optimum earth retaining walls by simulated annealing, Eng. Struct., 30, 821, 10.1016/j.engstruct.2007.05.023
Martínez, 2010, Heuristic optimization of RC bridge piers with rectangular hollow sections, Comput. Struct., 88, 375, 10.1016/j.compstruc.2009.11.009
Carbonell, 2011, Design of reinforced concrete road vaults by heuristic optimization, Adv. Eng. Softw., 42, 151, 10.1016/j.advengsoft.2011.01.002
Jahjouh, 2013, Artificial Bee Colony (ABC) algorithm in the design optimization of RC continuous beams, Struct. Multidisc. Optim., 47, 963, 10.1007/s00158-013-0884-y
Talbi, 2002, A taxonomy of hybrid metaheuristics, J. Heuristics, 8, 541, 10.1023/A:1016540724870
Blum, 2011, Hybrid metaheuristics in combinatorial optimization: a survey, Appl. Soft Comput., 11, 4135, 10.1016/j.asoc.2011.02.032
EFCA
EFCA
García-Segura, 2014, Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm, Lat. Am. J. Solid Struct., 11, 1190, 10.1590/S1679-78252014000700007
Martí, 2010
Ministerio de Fomento, 1998
Ministerio de Fomento, 2008
Krishnanand, 2009, Glowworm swarm optimisation: a new method for optimising multi-modal functions, Int. J. Comp. Intell. Stud., 1, 93, 10.1504/IJCISTUDIES.2009.025340
Kirkpatrick, 1983, Optimization by simulated annealing, Science, 220, 671, 10.1126/science.220.4598.671
Medina, 2001, Estimation of incident and reflected waves using simulated annealing, J. Waterw. Port Coast. Ocean Eng., 127, 213, 10.1061/(ASCE)0733-950X(2001)127:4(213)
Payá-Zaforteza, 2010, On the Weibull cost estimation of building frames designed by simulated annealing, Meccanica, 45, 693, 10.1007/s11012-010-9285-0