Cosmological solutions in nonlocal models

Pleiades Publishing Ltd - Tập 11 Số 7 - Trang 960-963 - 2014
Alexey S. Koshelev1, S. Yu. Vernov2
1Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes, Pleinlaan 2, B-1050, Brussels, Belgium
2Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. S. Stelle, “Renormalization of higher derivative quantum gravity,” Phys. Rev., Ser. D 16, 953 (1977).

I. Ya. Aref’eva, D. M. Belov, A. A. Giryavets, et al., “Noncommutative field theories and (super)string field theories,” hep-th/0111208.

S. Jhingan, S. Nojiri, S. D. Odintsov, et al., “Phantom and non-phantom dark energy: the cosmological relevance of non-locally corrected gravity,” Phys. Lett., Ser. B 663, 424 (2008); arXiv:0803.2613; T. S. Koivisto, “Dynamics of nonlocal cosmology,” Phys. Rev., Ser. D 77, 123513 (2008); arXiv:0803.3399; S. Capozziello, E. Elizalde, S. Nojiri, and S. D. Odintsov, “Accelerating cosmologies from nonlocal higher-derivative gravity,” Phys. Lett., Ser. B 671, 193 (2009); arXiv:0809.1535; L. Modesto, “Super-renormalizable quantum gravity,” Phys. Rev., Ser. D 86, 044005 (2012), arXiv:1107.2403; E. Elizalde, E. O. Pozdeeva, and S. Yu. Vernov, “Reconstruction procedure in nonlocal cosmological models,” Class. Quantum Grav. 30, 035002 (2013), arXiv:1209.5957; A. S. Koshelev, “Stable analytic bounce in non-local Einstein-Gauss-Bonnet cosmology,” Class. Quantum Grav. 30, 155001 (2013), arXiv:1302.2140; E. Elizalde, E. O. Pozdeeva, S. Yu. Vernov, and Y.-l. Zhang, “Cosmological solutions of a nonlocal model with a perfect fluid,” J. Cosmol. Astropart. Phys. 1307, 034 (2013), arXiv:1302.4330; S. Deser and R. P. Woodard, “Observational viability and stability of nonlocal cosmology,” J. Cosmol. Astropart. Phys. 1311, 036 (2013), arXiv:1307.6639; R. P. Woodard, “Nonlocal models of cosmic acceleration,” Found. Phys. 44, 213 (2014), arXiv:1401.0254.

N. Barnaby, T. Biswas, and J. M. Cline, “p-adic inflation,” J. High Energy Phys. 0704, 056 (2007), hepth/0612230; A. S. Koshelev, “Nonlocal SFT tachyon and cosmology,” J. High Energy Phys. 0704, 029 (2007), arXiv:hepth/0701103; I. Ya. Aref’eva, L. V. Joukovskaya, and S. Yu. Vernov, “Bouncing and accelerating solutions in nonlocal stringy models,” J. High Energy Phys. 0707, 087 (2007), arXiv:hepth/0701184; D. J. Mulryne and N. J. Nunes, “Diffusing nonlocal inflation: solving the field equations as an initial value problem,” Phys. Rev., Ser. D 78, 063519 (2008), arXiv:0805.0449; I. Ya. Aref’eva and A. S. Koshelev, “Cosmological signature of tachyon condensation,” J. High Energy Phys. 0809, 068 (2008), arXiv:0804.3570; A. S. Koshelev and S. Yu. Vernov, “Cosmological perturbations in SFT inspired nonlocal scalar field models,” Eur. Phys. J., Ser. C 72, 2198 (2012), arXiv:0903.5176; G. Calcagni and G. Nardelli, “Nonlocal gravity and the diffusion equation,” Phys. Rev., Ser. D 82, 123518 (2010), arXiv:1004.5144; A. S. Koshelev and S. Yu. Vernov, “Analysis of scalar perturbations in cosmological models with a nonlocal scalar field,” Class. Quant. Grav. 28, 085019 (2011), arXiv:1009.0746; A. S. Koshelev, “Modified nonlocal gravity,” Rom. J. Phys. 57, 894 (2012), arXiv:1112.6410.

T. Biswas, A. Mazumdar, and W. Siegel, “Bouncing universes in string-inspired gravity,” J. Cosmol. Astropart. Phys. 0603, 009 (2006), arXiv:hep-th/0508194.

T. Biswas, T. Koivisto, and A. Mazumdar, “Towards a resolution of the cosmological singularity in non-local higher derivative theories of gravity,” J. Cosmol. Astropart. Phys. 1011, 008 (2010), arXiv:1005.0590.

T. Biswas, E. Gerwick, T. Koivisto, and A. Mazumdar, “Towards singularity and ghost free theories of gravity,” Phys. Rev. Lett. 108, 031101 (2012), arXiv:1110.5249.

T. Biswas, A. S. Koshelev, A. Mazumdar, and S. Yu. Vernov, “Stable bounce and inflation in non-local higher derivative cosmology,” J. Cosmol. Astropart. Phys. 1208, 024 (2012), arXiv:1206.6374.

A. S. Koshelev and S. Yu. Vernov, “On bouncing solutions in non-local gravity,” Phys. Part. Nucl. 43, 666 (2012), arXiv:1202.1289. I. Dimitrijevic, I. Dragovich, J. Grujic, and Z. Rakic, “New cosmological solutions in nonlocal modified gravity,” arXiv:1302.2794.

T. Ruzmaikina and A. Ruzmaikin, “Quadratic corrections to the Lagrangian density of the gravitational field and the singularity,” Sov. Phys. JETP 30, 372 (1970); V. Ts. Gurovich and A. A. Starobinsky, “Quantum effects and regular cosmological models,” Sov. Phys. JETP 50, 844 (1979); K. I. Maeda, “Towards the Einstein-Hilbert action via conformal transformation,” Phys. Rev., Ser. D 39, 3159 (1989); S. Carloni, P. K. S. Dunsby, S. Capozziello, and A. Troisi, “Cosmological dynamics of Rn gravity,” Class. Quant. Grav. 22, 4839 (2005), arXiv:gr-qc/0410046; J. D. Barrow and S. Hervik, “Evolution of universes in quadratic theories of gravity,” Phys. Rev., Ser. D 74, 124017 (2006), arXiv:gr-qc/0610013; M. M. Ivanov and A. V. Toporensky, “Stable super-inflating cosmological solutions in f(R)-Gravity,” Int. J. Mod. Phys., Ser. D 21, 1250051 (2012), arXiv:1112.4194; S. Domazet, V. Radovanovic, M. Simonovic, and H. Stefancic, “On analytical solu tions of f(R) modified gravity theories in FLRW cosmologies,” Int. J. Mod. Phys., Ser. D 22, 1350006 (2013), arXiv:1203.5220; S. Capozziello and V. Faraoni, “Beyond Einstein gravity: a survey of gravitational theories for cosmology and astrophysics,” in Fund. Theor. Phys. (Springer, N.Y., 2011), Vol. 170.

P. A. R. Ade et al. (Planck Collab.), Planck 2013 Results, XXII: Constraints on Inflation, arXiv:1303.5082.

A. A. Starobinsky, “Relict gravitation radiation spectrum and initial state of the universe,” JETP Lett. 30, 682 (1979); A. A. Starobinsky, “A new type of isotropic cosmological models without singularity,” Phys. Lett., Ser. B 91, 99 (1980).

A. Vilenkin, “Classical and Quantum Cosmology of the Starobinsky Inflationary Model,” Phys. Rev. D 32, 2511 (1985).