Cosmetic applications of glucitol-core containing gallotannins from a proprietary phenolic-enriched red maple (Acer rubrum) leaves extract: inhibition of melanogenesis via down-regulation of tyrosinase and melanogenic gene expression in B16F10 melanoma cells

Hang Ma1, Jialin Xu2, Nicholas A. DaSilva1, Ling Wang3, Zhengxi Wei1, Le‐Hang Guo1, Shelby L. Johnson1, Wei Lü1, Jun Xu4, Qiong Gu4, Navindra P. Seeram5
1Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, USA
2Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
3Pre-Incubator for Innovative Drugs and Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
4School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
5Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Slominski A, Tobin DJ, Shibahara S, Wortsman J (2004) Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 84:1155–1228

Costin G-E, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976–994

Smit N, Vicanova J, Pavel S (2009) The hunt for natural skin whitening agents. Int J Mol Sci 10:5326–5349

Akazawa H, Akihisa T, Taguchi Y, Banno N, Yoneima R, Yasukawa K (2006) Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of Acer nikoense. Biol Pharm Bull 29:1970–1972

Akihisa T, Takeda A, Akazawa H, Kikuchi T, Yokokawa S, Ukiya M, Fukatsu M, Watanabe K (2012) Melanogenesis-inhibitory and cytotoxic activities of diarylheptanoids from Acer nikoense bark and their derivatives. Chem Biodivers 9:1475–1489

Arnason T, Hebda RJ, Johns T (1981) Use of plants for food and medicine by native peoples of eastern Canada. Can J Botany 59:2189–2325

Royer M, Prado M, García-Pérez ME, Diouf PN, Stevanovic T (2013) Study of nutraceutical, nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutrition 1:158–167

Kwon BS (1993) Pigmentation genes: the tyrosinase gene family and the pmel 17 gene family. J Invest Dermatol 100:134S–140

Kobayashi T, Urabe K, Winder A, Jimenez-Cervantes C, Imokawa G, Brewington T, Solano F, Garcia-Borron J, Hearing V (1994) Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J 13:5818–5825

Yasumoto K-i, Yokoyama K, Shibata K, Tomita Y, Shibahara S (1994) Microphthalmia-associated transcription factor as a regulator for melanocyte-specific transcription of the human tyrosinase gene. Mol Cell Biol 14:8058–8070

Westerhof W, Kooyers T (2005) Hydroquinone and its analogues in dermatology—a potential health risk. J Cosmet Dermatol 4:55–59

Parvez S, Kang M, Chung HS, Cho C, Hong MC, Shin MK, Bae H (2006) Survey and mechanism of skin depigmenting and lightening agents. Phytother Res 20:921–934

González-Sarrías A, Li L, Seeram NP (2012) Effects of maple (Acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of fuman tumorigenic and non-tumorigenic colon cells. Phytother Res 26:995–1002

González-Sarrías A, Ma H, Edmonds ME, Seeram NP (2013) Maple polyphenols, ginnalins A-C, induce S-and G2/M-cell cycle arrest in colon and breast cancer cells mediated by decreasing cyclins A and D1 levels. Food Chem 136:636–642

González-Sarrías A, Yuan T, Seeram NP (2012) Cytotoxicity and structure activity relationship studies of maplexins A-I, gallotannins from red maple (Acer rubrum). Food Chem Toxicol 50:1369–1376

Liu W, Wei Z, Ma H, Cai A, Liu Y, Sun J, DaSilva N, Johnson S, Kirschenbaum LJ, Cho B, Dain JA, Rowley DR, Shaikh ZA, Seeram NP (2017) Anti-glycation and anti-oxidative effects of a phenolic-enriched maple syrup extract and its protective effects on normal human colon cells. Food Funct 8:757–766

Ma H, DaSilva NA, Liu W, Nahar PP, Wei Z, Liu Y, Pham PT, Crews R, Vattem DA, Slitt AL, Shaikh ZA, Seeram NP (2016) Effects of a standardized phenolic-enriched maple syrup extract on β-amyloid aggregation, neuroinflammation in microglial and neuronal cells, and β-amyloid induced neurotoxicity in Caenorhabditis elegans. Neurochem Res 41:2836–2847

Ma H, Liu W, Frost L, Kirschenbaum LJ, Dain JA, Seeram NP (2016) Glucitol-core containing gallotannins inhibit the formation of advanced glycation end-products mediated by their antioxidant potential. Food Funct 5:2213–2222

Ma H, Wang L, Niesen DB, Cai A, Cho BP, Tan W, Gu Q, Xu J, Seeram NP (2015) Structure activity related, mechanistic, and modeling studies of gallotannins containing a glucitol-core and α-glucosidase. RSC Adv 130:107904–107915

Muhsinah AB, Ma H, DaSilva NA, Tuan T, Seeram NP (2017) Bioactive glucitol-core containing gallotannins and other phytochemicals from silver maple (Acer saccharinum) leaves. Nat Prod Commun 12:83–84

Yuan T, Wan C, Liu K, Seeram NP (2012) New maplexins F-I and phenolic glycosides from red maple (Acer rubrum) bark. Tetrahedron 68:959–964

Zhang Y, Ma H, Yuan T, Seeram NP (2015) Red maple (Acer rubrum) aerial parts as a source of bioactive phenolics. Nat Prod Commun 10:1409–1412

Wan C, Yuan T, Li L, Kandhi V, Cech NB, Xie M, Seeram NP (2012) Maplexins, new α-glucosidase inhibitors from red maple (Acer rubrum) stems. Bioorg Med Chem Lett 22:597–600

Deering RW, Chen J, Sun J, Ma H, Dubert J, Barja JL, Seeram NP, Wang H, Rowley DC (2016) N-acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J Nat Prod 79:447–450

Noh J-M, Lee Y-S (2011) Inhibitory activities of hydroxyphenolic acid-amino acid conjugates on tyrosinase. Food Chem 125:953–957

Chou TH, Ding HY, Hung WJ, Liang CH (2010) Antioxidative characteristics and inhibition of α-melanocyte-stimulating hormone-stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp Dermatol 19:742–750

Kubo I, Kinst-Hori I, Chaudhuri SK, Kubo Y, Sánchez Y, Ogura T (2000) Flavonols from Heterotheca inuloides: tyrosinase inhibitory activity and structural criteria. Bioorg Med Chem 7:1749–1755

Curto EV, Kwong C, Hermersdörfer H, Glatt H, Santis C, Virador V, Hearing VJ, Dooley TP (1999) Inhibitors of mammalian melanocyte tyrosinase: in vitro comparisons of alkyl esters of gentisic acid with other putative inhibitors. Biochem Pharmacol 57:663–672

Bi W, Gao Y, Shen J, He C, Liu H, Peng Y, Zhang C, Xiao P (2016) Traditional uses, phytochemistry, and pharmacology of the genus Acer (maple): a review. J Ethnopharmacol 189:31–60

Kamori A, Kato A, Miyawaki S, Koyama J, Nash RJ, Fleet GW, Miura D, Ishikawa F, Adachi I (2016) Dual action of acertannins as potential regulators of intracellular ceramide levels. Tetrahedron Asymmetr 27:1177–1185

Su TR, Lin JJ, Tsai CC, Huang TK, Yang ZY, Wu MO, Zheng YQ, Su CC, Wu YJ (2013) Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int J Mol Sci 14:20443–20458