Cortical surface complexity in a population-based normative sample

Brynn A. Dombroski1, Matthew Nitzken2, Ahmed Elnakib2, Fahmi Khalifa2, Andrew E. Switala3, Ayman El-Baz2, Manuel F. Casanova3
1Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, 40292, USA
2Department of Bioengineering, University of Louisville, Louisville, Kentucky, 40292, USA
3Department of Psychiatry and Behavioral Sciences, University of Louisville, Louisville, Kentucky, 40292, USA

Tóm tắt

Abstract

MRI studies on abnormal brain development are dependent on the quality, quantity, and type of normative development data available for comparison. Limitations affecting previous studies on normative development include small sample sizes, lack of demographic representation, heterogeneous subject populations, and inadequate longitudinal data. The National Institutes of Health Pediatric MRI Data Repository (NIHPD) for normative development was designed to address the aforementioned issues in reliability measures of control subjects for comparison studies. The subjects were recruited from six Pediatric Study Centers nationwide to create the largest, non-biased, longitudinal database of the developing brain. Using the NIHPD, we applied a 3D shape analysis method involving spherical harmonics to identify the cortical surface complexity of 396 subjects (210 female; 186 male) between the ages of 4.8 y and 22.3 y. MRI data had been obtained at one, two, or three time points approximately two years apart. A total of 144 participants (79 female; 65 male) provided MRI data from all time points. Our results confirm a direct correlation between cortical complexity and age in both males and females. Additionally, within the examined age range, females displayed consistently and significantly greater cortical complexity than males. Findings suggest that the underlying neural circuitry within male and female brains is different, possibly explaining observations of sexual dimorphism in social interaction, communication, and higher cognitive processes.

Từ khóa


Tài liệu tham khảo

Giedd J.N., Blumenthal J., Jeffries N.O., Castellanos F.X., Liu H., Zijdenbos A.P., et al., Brain development during childhood and adolescence: a longitudinal MRI study, Nat. Neurosci., 1999, 2, 861–863

Luders E., Narr K.L., Thompson P.M., Rex D.E., Jäncke L., Steinmetz H., et al., Gender differences in cortical complexity, Nat. Neurosci., 2004, 7, 799–800

Jackson J.D., Classical electrodynamics, 2nd edition, Wiley, New York, 1975

Chung M.K., Hartley R., Dalton K.M., Davidson R.J., Encoding cortical surface by spherical harmonics, Stat. Sinica, 2008, 18, 1269–1291

Talairach J., Szikla G., Atlas d’anatomie stéréotaxique du télencéphale: études anatomo-radiologiques, Masson, Paris, 1967

Talairach J., Tournoux P., Co-planar stereotaxic atlas of the human brain, Thieme Medical, New York, 1988

Brain Development Cooperative Group, Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI Study of Normal Brain Development, Cereb. Cortex, 2012, 22, 1–12

Keller S.S., Roberts N., Measurement of brain volume using MRI: software, techniques, choices and prerequisites, J. Anthropol. Sci., 2009, 87, 127–151

Yotter R.A., Dahnke R., Thompson P.M., Gaser C., Topological correction of brain surface meshes using spherical harmonics, Hum. Brain Mapp., 2011, 32, 1109–1124

Shen L., Farid H., McPeek M.A., Modeling three-dimensional morphological structures using spherical harmonics, Evolution, 2009, 63, 1003–1016

Brain Development Cooperative Group, Evans A.C., The NIH MRI study of normal brain development, Neuroimage, 2006, 30, 184–202

Nitzken M., Casanova M.F., Gimel’farb G.L., Elnakib A., Khalifa F., Switala A.E., et al., 3D shape analysis of the brain cortex with application to autism, IEEE Int. Symp. Biomed. Imaging, 2011, 8, 1847–1850

Fang Q., Boas D.A., Tetrahedral mesh generation from volumetric binary and gray-scale images, IEEE Int. Symp. Biomed. Imaging, 2009, 6, 1142–1145

MacDonald D., Kabani N., Avis D., Evans A.C., Automated 3-D extraction of inner and outer surfaces of cerebral cortex from MRI, Neuroimage, 2000, 12, 340–356

Chung M.K., Worsley K.J., Robbins S.M., Paus T., Taylor J., Giedd J.N., et al., Deformation-based surface morphometry applied to gray matter deformation, Neuroimage, 2003, 18, 198–213

El-Baz A.S., Casanova M.F., Gimel’farb G.L., Mott M., Switala A.E., Autism diagnostics by 3D texture analysis of cerebral white matter gyrifications, In: Ayache N., Ourselin S., Maeder A.J. (Eds.), Medical image computing and computer-assisted intervention-MICCAI 2007, part II, Springer, New York, 2007

Armstrong E., Schleicher A., Omran H., Curtis M., Zilles K., The ontogeny of human gyrification, Cereb. Cortex, 1995, 5, 56–63

Yakovlev P.I., Lecours A.R., The myelogenetic cycles of regional maturation of the brain, In: Minkowski A. (Ed.), Regional development of the brain in early life, Blackwell Scientific, Oxford, 1967

Sowell E.R., Thompson P.M., Holmes C.J., Batth R., Jernigan T.L., Toga A.W., Localizing age-related changes in brain structure between childhood and adolescence using statistical parametric mapping, Neuroimage, 1999, 9, 587–597

Chugani H.T., Phelps M.E., Maturational changes in cerebral function in infants determined by 18FDG positron emission tomography, Science, 1986, 231, 840–843

Gerig G., Styner M., Jones D.W., Weinberger D.R., Lieberman J.A., Shape analysis of brain ventricles using SPHARM, Math. Methods Biomed. Image Anal., 2001, 3, 171–178

Pakkenberg B., Gundersen H.J.G., Neocortical neuron number in humans: effect of sex and age, J. Comp. Neurol., 1997, 384, 312–320

Nopoulos P., Flaum M., O’Leary D., Andreasen N.C., Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging, Psychiatry Res. Neuroimag., 2000, 98, 1–13

Luders E., Narr K.L., Thompson P.M., Rex D.E., Woods R.P., DeLuca H., et al., Gender effects on cortical thickness and the influence of scaling, Hum. Brain Mapp., 2006, 27, 314–324

Thompson P.M., Schwartz C., Lin R.T., Khan A.A., Toga A.W., Threedimensional statistical analysis of sulcal variability in the human brain, J. Neurosci., 1996, 16, 4261–4274

Blanton R.E., Levitt J.G., Thompson P.M., Narr K.L., Capetillo-Cunliffe L., Nobel A., et al., Mapping cortical asymmetry and complexity patterns in normal children, Psychiatry Res. Neuroimag., 2001, 107, 29–43

Gogtay N., Giedd J.N., Lusk L., Hayashi K.M., Greenstein D., Vaituzis A.C., et al., Dynamic mapping of human cortical development during childhood through early adulthood, Proc. Natl. Acad. Sci. USA, 2004, 101, 8174–8179

Toga A.W., Thompson P.M., Sowell E.R., Mapping brain maturation, Trends Neurosci., 2006, 29, 148–159

Sowell E.R., Trauner D.A., Gamst A., Jernigan T.L., Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study, Dev. Med. Child Neurol., 2002, 44, 4–16

De Bellis M.D., Keshavan M.S., Beers S.R., Hall J., Frustaci K., Masalehdan A., et al., Sex differences in brain maturation during childhood and adolescence, Cereb. Cortex, 2001, 11, 552–557

Lenroot R.K., Giedd J.N., Brain development in children and adolescents: insights from anatomical magnetic resonance imaging, Neurosci. Biobehav. Rev., 2006, 30, 718–729

Lenroot R.K., Gogtay N., Greenstein D.K., Molloy Wells E., Wallace G.L., Clasen L.S., et al., Sexual dimorphism of brain developmental trajectories during childhood and adolescence, Neuroimage, 2007, 36, 1065–1073

Giedd J.N., Stockman M., Weddle C., Liverpool M., Alexander-Bloch A., Wallace G.L., et al., Anatomic magnetic resonance imaging of the developing child and adolescent brain and effects of genetic variation, Neuropsychol. Rev., 2010, 20, 349–361

Lombardo M.V., Ashwin E., Auyeung B., Chakrabarti B., Taylor K., Hackett G., et al., Fetal testosterone influences sexually dimorphic gray matter in the human brain, J. Neurosci., 2012, 32, 674–680

Raznahan A., Shaw P., Lalonde F., Stockman M., Wallace G.L., Greenstein D., et al., How does your cortex grow?, J. Neurosci., 2011, 31, 7174–7177