Cortical control of behavior and attention from an evolutionary perspective
Tài liệu tham khảo
Awh, 2012, Top-down versus bottom-up attentional control: a failed theoretical dichotomy, Trends Cogn. Sci., 16, 437, 10.1016/j.tics.2012.06.010
Basso, 2017, Circuits for action and cognition: a view from the superior colliculus, Annu. Rev. Vis. Sci., 3, 197, 10.1146/annurev-vision-102016-061234
Basso, 2021, Unraveling circuits of visual perception and cognition through the superior colliculus, Neuron, 109, 918, 10.1016/j.neuron.2021.01.013
Bourassa, 1995, Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer, Neuroscience, 66, 253, 10.1016/0306-4522(95)00009-8
Bourassa, 1995, Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer, Eur. J. Neurosci., 7, 19, 10.1111/j.1460-9568.1995.tb01016.x
Briggs, 2013, Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits, Nature, 499, 476, 10.1038/nature12276
Chalk, 2010, Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1, Neuron, 66, 114, 10.1016/j.neuron.2010.03.013
Cohen, 2009, Attention improves performance primarily by reducing interneuronal correlations, Nat. Neurosci., 12, 1594, 10.1038/nn.2439
Cox, 2000, Action potentials reliably invade axonal arbors of rat neocortical neurons, Proc. Natl. Acad. Sci. U S A, 97, 9724, 10.1073/pnas.170278697
Crapse, 2008, Corollary discharge across the animal kingdom, Nat. Rev. Neurosci., 9, 587, 10.1038/nrn2457
Deschênes, 1994, Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons, Brain Res., 664, 215, 10.1016/0006-8993(94)91974-7
Desimone, 1995, Neural mechanisms of selective visual attention, Annu. Rev. Neurosci., 18, 193, 10.1146/annurev.ne.18.030195.001205
Duysens, 1998, Neural control of locomotion; part 1: the central pattern generator from cats to humans, Gait Posture, 7, 131, 10.1016/S0966-6362(97)00042-8
Economo, 2018, Distinct descending motor cortex pathways and their roles in movement, Nature, 563, 79, 10.1038/s41586-018-0642-9
Eidelberg, 1980, Stepping by chronic spinal cats, Exp. Brain Res., 40, 241, 10.1007/BF00237787
Fiebelkorn, 2019, A rhythmic theory of attention, Trends Cogn. Sci., 23, 87, 10.1016/j.tics.2018.11.009
Fries, 2005, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cogn. Sci., 9, 474, 10.1016/j.tics.2005.08.011
Gharaei, 2020, Superior colliculus modulates cortical coding of somatosensory information, Nat. Commun., 11, 1693, 10.1038/s41467-020-15443-1
Giuffrida, 1991, Projections from the cerebral cortex to the red nucleus of the guinea-pig. A retrograde tracing study, Eur. J. Neurosci., 3, 866, 10.1111/j.1460-9568.1991.tb00098.x
Grillner, 2003, The motor infrastructure: from ion channels to neuronal networks, Nat. Rev. Neurosci., 4, 573, 10.1038/nrn1137
Grillner, 1985, Central pattern generators for locomotion, with special reference to vertebrates, Annu. Rev. Neurosci., 8, 233, 10.1146/annurev.ne.08.030185.001313
Halassa, 2017, Thalamic functions in distributed cognitive control, Nat. Neurosci., 20, 1669, 10.1038/s41593-017-0020-1
Herman, 2018, Midbrain activity can explain perceptual decisions during an attention task, Nat. Neurosci., 21, 1651, 10.1038/s41593-018-0271-5
Hong, 2018, Sensation, movement and learning in the absence of barrel cortex, Nature, 561, 542, 10.1038/s41586-018-0527-y
Hultborn, 2007, Spinal control of locomotion—from cat to man, Acta Physiol. (Oxf.), 189, 111, 10.1111/j.1748-1716.2006.01651.x
Kita, 2012, The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat, J. Neurosci., 32, 5990, 10.1523/JNEUROSCI.5717-11.2012
Krauzlis, 2013, Superior colliculus and visual spatial attention, Annu. Rev. Neurosci., 36, 165, 10.1146/annurev-neuro-062012-170249
Krauzlis, 2018, Selective attention without a neocortex, Cortex, 102, 161, 10.1016/j.cortex.2017.08.026
Kumar, 1998, A molecular timescale for vertebrate evolution, Nature, 392, 917, 10.1038/31927
Kuypers, 1967, Cortical projections to the red nucleus and the brain stem in the Rhesus monkey, Brain Res., 4, 151, 10.1016/0006-8993(67)90004-2
Lee, 2010, Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields, J. Neurosci., 30, 3058, 10.1523/JNEUROSCI.3766-09.2010
Lemon, 2008, Descending pathways in motor control, Annu. Rev. Neurosci., 31, 195, 10.1146/annurev.neuro.31.060407.125547
Lomber, 2007, Restoration of acoustic orienting into a cortically deaf hemifield by reversible deactivation of the contralesional superior colliculus: the acoustic “Sprague Effect”, J. Neurophysiol., 97, 979, 10.1152/jn.00767.2006
Lovejoy, 2010, Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments, Nat. Neurosci., 13, 261, 10.1038/nn.2470
Maunsell, 2006, Feature-based attention in visual cortex, Trends Neurosci., 29, 317, 10.1016/j.tins.2006.04.001
McAlonan, 2008, Guarding the gateway to cortex with attention in visual thalamus, Nature, 456, 391, 10.1038/nature07382
Miller, 2013, Cortical circuits for the control of attention, Curr. Opin. Neurobiol., 23, 216, 10.1016/j.conb.2012.11.011
Mineault, 2016, Enhanced spatial resolution during locomotion and heightened attention in mouse primary visual cortex, J. Neurosci., 36, 6382, 10.1523/JNEUROSCI.0430-16.2016
Nobre, 2014
Petersen, 2012, The attention system of the human brain: 20 years after, Annu. Rev. Neurosci., 35, 73, 10.1146/annurev-neuro-062111-150525
Petrof, 2012, Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices, J. Comp. Neurol., 520, 1678, 10.1002/cne.23006
Porter, 1993
Prasad, 2020, Layer 5 corticofugal projections from diverse cortical areas: variations on a pattern of thalamic and extra-thalamic targets, J. Neurosci., 40, 5785, 10.1523/JNEUROSCI.0529-20.2020
Raastad, 2003, Single-axon action potentials in the rat hippocampal cortex, J. Physiol., 548, 745, 10.1113/jphysiol.2002.032706
Reynolds, 2004, Attentional modulation of visual processing, Annu. Rev. Neurosci., 27, 611, 10.1146/annurev.neuro.26.041002.131039
Rossignol, 2004, Adaptive mechanisms of spinal locomotion in cats, Integr. Comp. Biol., 44, 71, 10.1093/icb/44.1.71
Rossignol, 2000, Neurobiology of spinal cord injury, 57
Sherman, 2016, Thalamus plays a central role in ongoing cortical functioning, Nat. Neurosci., 19, 533, 10.1038/nn.4269
Sherman, 1998, On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”, Proc. Natl. Acad. Sci. U S A, 95, 7121, 10.1073/pnas.95.12.7121
Sherman, 2013
Sherrington, 1906
Sprague, 1966, Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat, Science, 153, 1544, 10.1126/science.153.3743.1544
Sprague, 1965, The role of the superior colliculus in visually guided behavior, Exp. Neurol., 11, 115, 10.1016/0014-4886(65)90026-9
Stuart, 2007, Reflections on integrative and comparative movement neuroscience, Integr. Comp. Biol., 47, 482, 10.1093/icb/icm037
Suryanarayana, 2017, The lamprey pallium provides a blueprint of the mammalian layered cortex, Curr. Biol., 27, 3264, 10.1016/j.cub.2017.09.034
Suzuki, 2019, The role of the optic tectum for visually evoked orienting and evasive movements, Proc. Natl. Acad. Sci. U S A, 116, 15272, 10.1073/pnas.1907962116
Theyel, 2010, The corticothalamocortical circuit drives higher-order cortex in the mouse, Nat. Neurosci., 13, 84, 10.1038/nn.2449
Usrey, 2020, Functions of the visual thalamus in selective attention
Usrey, 2019, Corticofugal circuits: communication lines from the cortex to the rest of the brain, J. Comp. Neurol., 527, 640, 10.1002/cne.24423
Whelan, 1996, Control of locomotion in the decerebrate cat, Prog. Neurobiol., 49, 481, 10.1016/0301-0082(96)00028-7
Witham, 2016, Corticospinal inputs to primate motoneurons innervating the forelimb from two divisions of primary motor cortex and area 3a, J. Neurosci., 36, 2605, 10.1523/JNEUROSCI.4055-15.2016
Womelsdorf, 2006, Gamma-band synchronization in visual cortex predicts speed of change detection, Nature, 439, 733, 10.1038/nature04258
Xu, 2016, Lamprey: a model for vertebrate evolutionary research, Zool. Res., 37, 263
Zhang, 2020, Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics, bioRxiv