Cortical control of behavior and attention from an evolutionary perspective

Neuron - Tập 109 - Trang 3048-3054 - 2021
S. Murray Sherman1, W. Martin Usrey2
1Department of Neurobiology, University of Chicago, Chicago, IL, USA
2Center for Neuroscience, University of California, Davis, Davis, CA, USA

Tài liệu tham khảo

Awh, 2012, Top-down versus bottom-up attentional control: a failed theoretical dichotomy, Trends Cogn. Sci., 16, 437, 10.1016/j.tics.2012.06.010 Basso, 2017, Circuits for action and cognition: a view from the superior colliculus, Annu. Rev. Vis. Sci., 3, 197, 10.1146/annurev-vision-102016-061234 Basso, 2021, Unraveling circuits of visual perception and cognition through the superior colliculus, Neuron, 109, 918, 10.1016/j.neuron.2021.01.013 Bourassa, 1995, Corticothalamic projections from the primary visual cortex in rats: a single fiber study using biocytin as an anterograde tracer, Neuroscience, 66, 253, 10.1016/0306-4522(95)00009-8 Bourassa, 1995, Corticothalamic projections from the cortical barrel field to the somatosensory thalamus in rats: a single-fibre study using biocytin as an anterograde tracer, Eur. J. Neurosci., 7, 19, 10.1111/j.1460-9568.1995.tb01016.x Briggs, 2013, Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits, Nature, 499, 476, 10.1038/nature12276 Chalk, 2010, Attention reduces stimulus-driven gamma frequency oscillations and spike field coherence in V1, Neuron, 66, 114, 10.1016/j.neuron.2010.03.013 Cohen, 2009, Attention improves performance primarily by reducing interneuronal correlations, Nat. Neurosci., 12, 1594, 10.1038/nn.2439 Cox, 2000, Action potentials reliably invade axonal arbors of rat neocortical neurons, Proc. Natl. Acad. Sci. U S A, 97, 9724, 10.1073/pnas.170278697 Crapse, 2008, Corollary discharge across the animal kingdom, Nat. Rev. Neurosci., 9, 587, 10.1038/nrn2457 Deschênes, 1994, Corticothalamic projections from layer V cells in rat are collaterals of long-range corticofugal axons, Brain Res., 664, 215, 10.1016/0006-8993(94)91974-7 Desimone, 1995, Neural mechanisms of selective visual attention, Annu. Rev. Neurosci., 18, 193, 10.1146/annurev.ne.18.030195.001205 Duysens, 1998, Neural control of locomotion; part 1: the central pattern generator from cats to humans, Gait Posture, 7, 131, 10.1016/S0966-6362(97)00042-8 Economo, 2018, Distinct descending motor cortex pathways and their roles in movement, Nature, 563, 79, 10.1038/s41586-018-0642-9 Eidelberg, 1980, Stepping by chronic spinal cats, Exp. Brain Res., 40, 241, 10.1007/BF00237787 Fiebelkorn, 2019, A rhythmic theory of attention, Trends Cogn. Sci., 23, 87, 10.1016/j.tics.2018.11.009 Fries, 2005, A mechanism for cognitive dynamics: neuronal communication through neuronal coherence, Trends Cogn. Sci., 9, 474, 10.1016/j.tics.2005.08.011 Gharaei, 2020, Superior colliculus modulates cortical coding of somatosensory information, Nat. Commun., 11, 1693, 10.1038/s41467-020-15443-1 Giuffrida, 1991, Projections from the cerebral cortex to the red nucleus of the guinea-pig. A retrograde tracing study, Eur. J. Neurosci., 3, 866, 10.1111/j.1460-9568.1991.tb00098.x Grillner, 2003, The motor infrastructure: from ion channels to neuronal networks, Nat. Rev. Neurosci., 4, 573, 10.1038/nrn1137 Grillner, 1985, Central pattern generators for locomotion, with special reference to vertebrates, Annu. Rev. Neurosci., 8, 233, 10.1146/annurev.ne.08.030185.001313 Halassa, 2017, Thalamic functions in distributed cognitive control, Nat. Neurosci., 20, 1669, 10.1038/s41593-017-0020-1 Herman, 2018, Midbrain activity can explain perceptual decisions during an attention task, Nat. Neurosci., 21, 1651, 10.1038/s41593-018-0271-5 Hong, 2018, Sensation, movement and learning in the absence of barrel cortex, Nature, 561, 542, 10.1038/s41586-018-0527-y Hultborn, 2007, Spinal control of locomotion—from cat to man, Acta Physiol. (Oxf.), 189, 111, 10.1111/j.1748-1716.2006.01651.x Kita, 2012, The subthalamic nucleus is one of multiple innervation sites for long-range corticofugal axons: a single-axon tracing study in the rat, J. Neurosci., 32, 5990, 10.1523/JNEUROSCI.5717-11.2012 Krauzlis, 2013, Superior colliculus and visual spatial attention, Annu. Rev. Neurosci., 36, 165, 10.1146/annurev-neuro-062012-170249 Krauzlis, 2018, Selective attention without a neocortex, Cortex, 102, 161, 10.1016/j.cortex.2017.08.026 Kumar, 1998, A molecular timescale for vertebrate evolution, Nature, 392, 917, 10.1038/31927 Kuypers, 1967, Cortical projections to the red nucleus and the brain stem in the Rhesus monkey, Brain Res., 4, 151, 10.1016/0006-8993(67)90004-2 Lee, 2010, Attentional modulation of MT neurons with single or multiple stimuli in their receptive fields, J. Neurosci., 30, 3058, 10.1523/JNEUROSCI.3766-09.2010 Lemon, 2008, Descending pathways in motor control, Annu. Rev. Neurosci., 31, 195, 10.1146/annurev.neuro.31.060407.125547 Lomber, 2007, Restoration of acoustic orienting into a cortically deaf hemifield by reversible deactivation of the contralesional superior colliculus: the acoustic “Sprague Effect”, J. Neurophysiol., 97, 979, 10.1152/jn.00767.2006 Lovejoy, 2010, Inactivation of primate superior colliculus impairs covert selection of signals for perceptual judgments, Nat. Neurosci., 13, 261, 10.1038/nn.2470 Maunsell, 2006, Feature-based attention in visual cortex, Trends Neurosci., 29, 317, 10.1016/j.tins.2006.04.001 McAlonan, 2008, Guarding the gateway to cortex with attention in visual thalamus, Nature, 456, 391, 10.1038/nature07382 Miller, 2013, Cortical circuits for the control of attention, Curr. Opin. Neurobiol., 23, 216, 10.1016/j.conb.2012.11.011 Mineault, 2016, Enhanced spatial resolution during locomotion and heightened attention in mouse primary visual cortex, J. Neurosci., 36, 6382, 10.1523/JNEUROSCI.0430-16.2016 Nobre, 2014 Petersen, 2012, The attention system of the human brain: 20 years after, Annu. Rev. Neurosci., 35, 73, 10.1146/annurev-neuro-062111-150525 Petrof, 2012, Two populations of corticothalamic and interareal corticocortical cells in the subgranular layers of the mouse primary sensory cortices, J. Comp. Neurol., 520, 1678, 10.1002/cne.23006 Porter, 1993 Prasad, 2020, Layer 5 corticofugal projections from diverse cortical areas: variations on a pattern of thalamic and extra-thalamic targets, J. Neurosci., 40, 5785, 10.1523/JNEUROSCI.0529-20.2020 Raastad, 2003, Single-axon action potentials in the rat hippocampal cortex, J. Physiol., 548, 745, 10.1113/jphysiol.2002.032706 Reynolds, 2004, Attentional modulation of visual processing, Annu. Rev. Neurosci., 27, 611, 10.1146/annurev.neuro.26.041002.131039 Rossignol, 2004, Adaptive mechanisms of spinal locomotion in cats, Integr. Comp. Biol., 44, 71, 10.1093/icb/44.1.71 Rossignol, 2000, Neurobiology of spinal cord injury, 57 Sherman, 2016, Thalamus plays a central role in ongoing cortical functioning, Nat. Neurosci., 19, 533, 10.1038/nn.4269 Sherman, 1998, On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”, Proc. Natl. Acad. Sci. U S A, 95, 7121, 10.1073/pnas.95.12.7121 Sherman, 2013 Sherrington, 1906 Sprague, 1966, Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat, Science, 153, 1544, 10.1126/science.153.3743.1544 Sprague, 1965, The role of the superior colliculus in visually guided behavior, Exp. Neurol., 11, 115, 10.1016/0014-4886(65)90026-9 Stuart, 2007, Reflections on integrative and comparative movement neuroscience, Integr. Comp. Biol., 47, 482, 10.1093/icb/icm037 Suryanarayana, 2017, The lamprey pallium provides a blueprint of the mammalian layered cortex, Curr. Biol., 27, 3264, 10.1016/j.cub.2017.09.034 Suzuki, 2019, The role of the optic tectum for visually evoked orienting and evasive movements, Proc. Natl. Acad. Sci. U S A, 116, 15272, 10.1073/pnas.1907962116 Theyel, 2010, The corticothalamocortical circuit drives higher-order cortex in the mouse, Nat. Neurosci., 13, 84, 10.1038/nn.2449 Usrey, 2020, Functions of the visual thalamus in selective attention Usrey, 2019, Corticofugal circuits: communication lines from the cortex to the rest of the brain, J. Comp. Neurol., 527, 640, 10.1002/cne.24423 Whelan, 1996, Control of locomotion in the decerebrate cat, Prog. Neurobiol., 49, 481, 10.1016/0301-0082(96)00028-7 Witham, 2016, Corticospinal inputs to primate motoneurons innervating the forelimb from two divisions of primary motor cortex and area 3a, J. Neurosci., 36, 2605, 10.1523/JNEUROSCI.4055-15.2016 Womelsdorf, 2006, Gamma-band synchronization in visual cortex predicts speed of change detection, Nature, 439, 733, 10.1038/nature04258 Xu, 2016, Lamprey: a model for vertebrate evolutionary research, Zool. Res., 37, 263 Zhang, 2020, Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ single-cell transcriptomics, bioRxiv