Cortical-Inspired Wilson–Cowan-Type Equations for Orientation-Dependent Contrast Perception Modelling

Journal of Mathematical Imaging and Vision - Tập 63 Số 2 - Trang 263-281 - 2021
Marcelo Bertalmío1, Luca Calatroni2, Valentina Franceschi3,4, Benedetta Franceschiello5, Dario Prandi6
1Departament de Tecnologies de la Informació i les Comunicacions (Roc Boronat, 138 08018 Barcelona - Spain)
2MORPHEME - Morphologie et Images (France)
3CaGE - Control And GEometry (France)
4LJLL (UMR_7598) - Laboratoire Jacques-Louis Lions (Sorbonne-Université, Boîte courrier 187 - 75252 Paris Cedex 05 - France)
5Fondation Asile des aveugles - Hôpital Ophtalmique Jules-Gonin [Lausanne] (Avenue de France 15, 1000 Lausanne - Switzerland)
6L2S - Laboratoire des signaux et systèmes (Plateau de Moulon 3 rue Joliot Curie 91192 GIF SUR YVETTE CEDEX - France)

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atick, J.J.: Could information theory provide an ecological theory of sensory processing? Netw. Comput. Neural Syst. 3(2), 213–251 (1992)

Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183 (1954)

Barbieri, D., Citti, G., Cocci, G., Sarti, A.: A cortical-inspired geometry for contour perception and motion integration. J. Math. Imaging Vis. 49(3), 511–529 (2014). https://doi.org/10.1007/s10851-013-0482-z

Barlow, H.B., et al.: Possible principles underlying the transformation of sensory messages. Sens. Commun. 1, 217–234 (1961)

Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A multi-orientation analysis approach to retinal vessel tracking. J. Math. Imaging Vis. 49(3), 583–610 (2014)

Bertalmío, M.: From image processing to computational neuroscience: a neural model based on histogram equalization. Front. Comput. Neurosci. 8, 71 (2014)

Bertalmío, M.: Image Processing for Cinema. Chapman and Hall/CRC, London (2014)

Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Gomez Villa, A., Prandi, D.: Visual illusions via neural dynamics: Wilson–Cowan-type models and the efficient representation principle. J. Neurophysiol. 123(5), 1606–1618 (2020). https://doi.org/10.1152/jn.00488.2019

Bertalmío, M., Calatroni, L., Franceschi, V., Franceschiello, B., Prandi, D.: A cortical-inspired model for orientation-dependent contrast perception: a link with Wilson–Cowan equations. In: Lellmann, J., Burger, M., Modersitzki, J. (eds.) Scale Space and Variational Methods in Computer Vision, pp. 472–484. Springer, Cham (2019)

Bertalmío, M., Caselles, V., Provenzi, E., Rizzi, A.: Perceptual color correction through variational techniques. IEEE Trans. Image Process. 16(4), 1058–1072 (2007)

Bertalmío, M., Cowan, J.D.: Implementing the retinex algorithm with Wilson–Cowan equations. J. Physiol. 103(1), 69–72 (2009)

Blakeslee, B., Cope, D., McCourt, M.E.: The oriented difference of gaussians (ODOG) model of brightness perception: overview and executable Mathematica notebooks. Behav. Res. Methods 48(1), 306–312 (2016)

Blakeslee, B., McCourt, M.E.: A multiscale spatial filtering account of the White effect, simultaneous brightness contrast and grating induction. Vis. Res. 39(26), 4361–4377 (1999)

Bohi, A., Prandi, D., Guis, V., Bouchara, F., Gauthier, J.P.: Fourier descriptors based on the structure of the human primary visual cortex with applications to object recognition. J. Math. Imaging Vis. 57(1), 117–133 (2017). https://doi.org/10.1007/s10851-016-0669-1

Boscain, U.V., Chertovskih, R., Gauthier, J.P., Prandi, D., Remizov, A.: Highly corrupted image inpainting through hypoelliptic diffusion. J. Math. Imaging Vis. 60(8), 1231–1245 (2018). https://doi.org/10.1007/s10851-018-0810-4

Bosking, W.H., Zhang, Y., Schofield, B., Fitzpatrick, D.: Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17(6), 2112–2127 (1997)

Bressloff, P.C., Cowan, J.D.: An amplitude equation approach to contextual effects in visual cortex. Neural Comput. 14(3), 493–525 (2002)

Bressloff, P.C., Cowan, J.D., Golubitsky, M., Thomas, P.J., Wiener, M.C.: Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 356, 299–330 (2001)

Brücke, E.: Über Ergänzungs und Contrastfarben. In: Sitzungsberichte der Mathematisch-naturwissenschaftlichen Classe der Kaiserlichen, vol. 51, pp. 461–501. Akademie der Wissenschaften, Vienna (1865)

Carandini, M., Demb, J.B., Mante, V., Tolhurst, D.J., Dan, Y., Olshausen, B.A., Gallant, J.L., Rust, N.C.: Do we know what the early visual system does? J. Neurosci. 25(46), 10577–10597 (2005)

Chan, T., Shen, J.: Image Processing and Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2005). https://doi.org/10.1137/1.9780898717877

Chevreul, M.E.: De la loi du contraste simultané des couleurs et de l’assortiment des object colorés [The law of simultaneous contrast of colors and the assortment of colored objects]. Pitois-Levreault, Paris, France (1839)

Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24(3), 307–326 (2006)

Cowan, J.D., Neuman, J., van Drongelen, W.: Wilson–Cowan equations for neocortical dynamics. J. Math. Neurosci. 6(1), 1 (2016)

Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A Opt. Image Sci. 2(7), 1160–1169 (1985)

Duits, R., Felsberg, M., Granlund, G., Haar-Romenij-ter, B.: Image analysis and reconstruction using a wavelet transform constructed from a reducible representation of the Euclidean motion group. Int. J. Comput. Vis. 72(1), 79–102 (2007). https://doi.org/10.1007/s11263-006-8894-5

Duits, R., Franken, E.: Left-invariant parabolic evolutions on $$SE(2)$$ and contour enhancement via invertible orientation scores. Part I: linear left-invariant diffusion equations on $$SE(2)$$. Q. Appl. Math. 68(2), 255–292 (2010)

Faugeras, O., Touboul, J., Cessac, B.: A constructive mean-field analysis of multi-population neural networks with random synaptic weights and stochastic inputs. Front. Comput. Neurosci. 3, 1 (2009). https://doi.org/10.3389/neuro.10.001.2009

Franceschiello, B., Mashtakov, A., Citti, G., Sarti, A.: Modelling of the poggendorff illusion via sub-riemannian geodesics in the roto-translation group. In: International Conference on Image Analysis and Processing, pp. 37–47. Springer, Berlin (2017)

Franceschiello, B., Mashtakov, A., Citti, G., Sarti, A.: Geometrical optical illusion via sub-riemannian geodesics in the roto-translation group. Differ. Geom. Appl. 65, 55–77 (2019)

Franceschiello, B., Sarti, A., Citti, G.: A neuromathematical model for geometrical optical illusions. J. Math. Imaging Vis. 60(1), 94–108 (2018)

French, D.: Identification of a free energy functional in an integro-differential equation model for neuronal network activity. Appl. Math. Lett. 17(9), 1047–1051 (2004). https://doi.org/10.1016/j.aml.2004.07.007

Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982). https://doi.org/10.1073/pnas.79.8.2554

Howe, C.Q., Yang, Z., Purves, D.: The poggendorff illusion explained by natural scene geometry. Proc. Natl. Acad. Sci. 102(21), 7707–7712 (2005)

Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195(1), 215–243 (1968)

Kim, J., Batard, T., Bertalmío, M.: Retinal processing optimizes contrast coding. J. Vis. 16(12), 1151–1151 (2016)

Kitaoka, A.: Adelson’s checker-shadow illusion-like gradation lightness illusion. http://www.psy.ritsumei.ac.jp/~akitaoka/gilchrist2006mytalke.html (2006). Accessed: 03 Nov 2018

Martinez-Garcia, M., Cyriac, P., Batard, T., Bertalmío, M., Malo, J.: Derivatives and inverse of cascaded linear+nonlinear neural models. PLOS ONE 13(10), 1–49 (2018)

McCourt, M.E.: A spatial frequency dependent grating-induction effect. Vis. Res. 22(1), 119–134 (1982)

Olshausen, B.A., Field, D.J.: Vision and the coding of natural images: the human brain may hold the secrets to the best image-compression algorithms. Am. Sci. 88(3), 238–245 (2000)

Otazu, X., Vanrell, M., Parraga, C.A.: Multiresolution wavelet framework models brightness induction effects. Vis. Res. 48(5), 733–751 (2008)

Petitot, J.: Elements of Neurogeometry: Functional Architectures of Vision. Lecture Notes in Morphogenesis. Springer, Berlin (2017)

Prandi, D., Gauthier, J.P.: A Semidiscrete Version of the Petitot Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition. Springer Briefs in Mathematics. Springer International Publishing, Cham (2017)

Rucci, M., Victor, J.D.: The unsteady eye: an information-processing stage, not a bug. Trends Neurosci. 38(4), 195–206 (2015)

Sarti, A., Citti, G.: The constitution of visual perceptual units in the functional architecture of V1. J. Comput. Neurosci. 38(2), 285–300 (2015). https://doi.org/10.1007/s10827-014-0540-6

Self, M.W., Lorteije, J.A., Vangeneugden, J., van Beest, E.H., Grigore, M.E., Levelt, C.N., Heimel, J.A., Roelfsema, P.R.: Orientation-tuned surround suppression in mouse visual cortex. J. Neurosci. 34(28), 9290–9304 (2014)

Shapley, R., Gordon, J.: Nonlinearity in the perception of form. Percept. Psychophys. 37(1), 84–88 (1985). https://doi.org/10.3758/BF03207143

Sugita, Y., Hidaka, S., Teramoto, W.: Visual percepts modify iconic memory in humans. Sci. Rep. 8, 1–7 (2018)

Ts’o, D.Y., Gilbert, C.D., Wiesel, T.N.: Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6(4), 1160–1170 (1986)

Veltz, R., Faugeras, O.: Local/global analysis of the stationary solutions of some neural field equations. SIAM J. Appl. Dyn. Syst. 9(3), 954–998 (2009). https://doi.org/10.1137/090773611

Webster, M.A.: Visual adaptation. Annu. Rev. Vis. Sci. 1(1), 547–567 (2015). https://doi.org/10.1146/annurev-vision-082114-035509

Weintraub, D.J., Krantz, D.H.: The Poggendorff illusion: amputations, rotations, and other perturbations. Atten. Percept. Psychophys. 10(4), 257–264 (1971)

Westheimer, G.: Illusions in the spatial sense of the eye: geometrical-optical illusions and the neural representation of space. Vis. Res. 48(20), 212–2142 (2008)

White, M.: A new effect of pattern on perceived lightness. Perception 8(4), 413–416 (1979)

Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. BioPhys. J. 12(1), 1–24 (1972)

Yeonan-Kim, J., Bertalmío, M.: Retinal lateral inhibition provides the biological basis of long-range spatial induction. PLOS ONE 11(12), 1–23 (2016)

Zhang, J., Duits, R., Sanguinetti, G., ter Haar Romeny, B.M.: Numerical approaches for linear left-invariant diffusions on se (2), their comparison to exact solutions, and their applications in retinal imaging. Numer. Math. Theory Methods Appl. 9(1), 1–50 (2016)