Corrosion of Zirconium Alloys Used for Nuclear Fuel Cladding
Tóm tắt
During operation, nuclear fuel rods are immersed in the primary water, causing waterside corrosion and consequent hydrogen ingress. In this review, the mechanisms of corrosion and hydrogen pickup and the role of alloy selection in minimizing both phenomena are considered on the basis of two principal characteristics: the pretransition kinetics and the loss of oxide protectiveness at transition. In zirconium alloys, very small changes in composition or microstructure can cause significant corrosion differences so that corrosion performance is strongly alloy dependent. The alloys show different, but reproducible, subparabolic pretransition kinetics and transition thicknesses. A mechanism for oxide growth and breakup based on a detailed study of the oxide structure can explain these results. Through the use of the recently developed coupled current charge compensation model of corrosion kinetics and hydrogen pickup, the subparabolic kinetics and the hydrogen fraction can be rationalized: Hydrogen pickup increases when electron transport decreases, requiring hydrogen ingress to close the reaction.
Từ khóa
Tài liệu tham khảo
1. IAEA. 2010.Review of fuel failures in water cooled reactors. Nucl. Energy Ser. NF-T-2.1, IAEA
2. Lustman B. 1979. Zirconium technology—twenty years of evolution. In4th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 681, pp. 5–18. West Conshohocken, PA: ASTM Int.
3. Rickover HG, Geiger LD, Lustman B. 1975.History of the development of zirconium alloys for use in nuclear reactors. Rep., Energy Res. Dev. Admin./Div. Naval React., Washington, DC
4. Hillner E. 1977. Corrosion of zirconium base alloys—an overview. In3rd International Symposium on Zirconium in the Nuclear Industry, ASTM STP 633, pp. 211–35. West Conshohocken, PA: ASTM Int.
6. Sabol GP. 2005. ZIRLO: an alloy development success. In14th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1467, pp. 3–24. West Conshohocken, PA: ASTM Int.
7. Sabol GP, Kilp GR, Balfour MG, Roberts E. 1989. Development of a cladding alloy for high burnup. In8th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1023. West Conshohocken, PA: ASTM Int.
8. Mardon JP, Charquet D, Senevat J. 2000. Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy. In12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, pp. 505–24. West Conshohocken, PA: ASTM Int.
9. Armijo JS, Coffin L, Rosenbaun H. 1995. Development of zirconium–barrier fuel cladding. In11th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245, pp. 3–18. West Conshohocken, PA: ASTM Int.
Cox B, 2003, J. Corros. Sci. Eng., 6, 14
12. IAEA. 1993.Corrosion of zirconium alloys in nuclear power plants. IAEA-TECDOC-684, IAEA
13. IAEA. 1998. Waterside corrosion of zirconium alloys in nuclear power plants. IAEA-TECDOC-996, IAEA
Motta AT, 2011, J. Met., 63, 59
16. Sabol GP, Comstock RJ, Weiner RA, Larouere P, Stanutz RN. 1994. In-reactor corrosion performance of ZIRLO and Zircaloy-4. In10th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245, pp. 724–44. West Conshohocken, PA: ASTM Int.
17. Leech WJ, Yueh K. 2001. The fuel duty index, a method to assess fuel performance. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2001), pp. 2–16. La Grange Park, IL: ANS
18. Mardon JP, Charquet D, Senevat J. 1994. Development of new zirconium alloys for PWR fuel rod cladding. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 1994), pp. 643–49. La Grange Park, IL: ANS
19. Mardon JP, Garner G, Beslu P, Charquet D, Senevat J. 1997. Update on the development of advanced zirconium alloys for PWR fuel rod claddings. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 1997), pp. 405–12. La Grange Park, IL: ANS
20. Pan G, Garde AM, Atwood AR, Kallstrom R, Jadernas D. 2013. High burnup Optimized ZIRLO cladding performance. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2013), pp. 1–8. La Grange Park, IL: ANS
21. Mitchell D, Garde A, Davis D. 2010. Optimized ZIRLO fuel performance in Westinghouse PWRs. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2010), pp. 107–14. La Grange Park, IL: ANS
22. Romero J, Hallstadius L, Owaki M, Pan G, Kataoka K et al. 2014. Evolution of Westinghouse fuel cladding. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2014), Pap. 100019. La Grange Park, IL: ANS
23. Yoshino A, Ono S, Kido T, Onooka H. 2014. Irradiation behavior of J-Alloy™ at high burnup.Proceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2014), Pap. 100153. La Grange Park, IL: ANS
24. Pan G, Long CJ, Garde AM, Atwood AR, Foster JP et al. 2010. Advanced material for PWR application: AXIOM cladding. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2010), Pap. 074. La Grange Park, IL: ANS
25. Mardon JP, Garner GL, Hoffmann PB. 2010. M5® a breakthrough in Zr alloy. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2010), Pap. 069. La Grange Park, IL: ANS
26. Motta AT, Yilmazbayhan A, Comstock RJ, Partezana J, Sabol GP, et al. 2005. Microstructure and growth mechanism of oxide layers formed on Zr alloys studied with micro-beam synchrotron radiation. In14th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1467, pp. 205–32. West Conshohocken, PA: ASTM Int.
Fuketa T, 1996, Nucl. Saf., 37, 328
29. Couet A, Motta AT, Comstock RJ. 2013. Effect of alloying elements on hydrogen pick-up in zirconium alloys. In17th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1543, pp 479–514. West Conshohocken, PA: ASTM Int.
Fromhold AT, 1978, J. Electrochem. Soc., 125, C118
Motta AT, 2012, J. Met., 64, 1403
38. Motta AT, Gomes Da Silva MJ, Yilmazbayhan A, Comstock RJ, Cai Z, Lai B. 2009. Microstructural characterization of oxides formed on model Zr alloys using synchrotron radiation. In15th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1505, pp. 486–506. West Conshohocken, PA: ASTM Int.
39. Inagaki M, Kanno M, Maki H. 1991. Effect of alloying elements in zircaloy on photoelectrochemical characteristics of zirconium-oxide films. In9th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1132, pp. 437–60. West Conshohocken, PA: ASTM Int.
Douglass DL, 1971, The Metallurgy of Zirconium
48. Lemaignan C, Motta AT. 1994. Zirconium alloys in nuclear applications. InMaterials Science and Technology, Vol. 10, ed. BRT Frost, pp. 1–51. New York: Wiley
Hauffe K, 1965, Oxidation of Metals
Fromhold AT, 1975, Theory of Metal Oxidation
Wagner C, 1930, Z. Phys. Chem., 11, 163
59. Cox B, Roy C. 1965.The use of tritium as a tracer in studies of hydrogen uptake by zirconium alloys. AECL 2519, Chalk River Nucl. Lab., At. Energy Can.
Kass S, 1962, ASM Trans. Q., 55, 77
61. Garde AM, Slagle H, Mitchell D. 2009. Hydrogen pick-up fraction for ZIRLO cladding corrosion and resulting impact on the cladding integrity. InProceedings of International Conference on Light Water Reactor Fuel Performance(Top Fuel 2009), Pap. 2136. La Grange Park, IL: ANS
Wanklyn JN, 1961, The Corrosion of Zirconium and Its Alloys in High Temperature Steam. Part II: The Uptake of Hydrogen During Corrosion.
63. Baur K, Garzarolli F, Ruhmann H, Sell H-J. 2000. Electrochemical examinations in 350°C water with respect to the mechanism of corrosion-hydrogen pickup. In12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, pp. 836–52. West Conshohocken, PA: ASTM Int.
64. Ramasubramanian N, Billot P, Yagnik S. 2002. Hydrogen evolution and pickup during the corrosion of zirconium alloys: a critical evaluation of the solid state and porous oxide electrochemistry. In13th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1423, pp. 222–44. West Conshohocken, PA: ASTM Int.
Gabory BD, 2013, Light Water Reactor Fuel Performance Meeting (Top Fuel 2013)
78. Pecheur D, Lefebvre F, Motta AT, Lemaignan C, Charquet D. 1994. Oxidation of intermetallic precipitates in Zircaloy-4: impact of irradiation. In10th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245, pp. 687–70. West Conshohocken, PA: ASTM Int.
Sakamoto K, 2010, Light Water Reactor Fuel Performance Meeting (Top Fuel 2010)
87. Deleted in proof
88. Takeda K, Anada H. 2000. Mechanism of corrosion degradation in Sn. In12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, pp. 592–608. West Conshohocken, PA: ASTM Int.
90. Warr BD, Elmoselhi M, Newcomb SB, McIntyre NS, Brennenstuhl AM, Lichtenberger PC. 1991. Oxide characteristics and their relationship to hydrogen uptake in zirconium alloys. In9th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1132, pp. 740–57. West Conshohocken, PA: ASTM Int.
92. Hutchinson B, Lehtinen B, Limbach M, Dahlback M. 2009. A study of the structure and chemistry in Zircaloy-2 and the resulting oxide after high temperature corrosion. In15th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1505, pp. 269–84. West Conshohocken, PA: ASTM Int.
93. Hudson D, Ni N, Lozano-Perez S, Saxey D, English C, et al. 2009. The atomic scale structure and chemistry of the Zircaloy-4 metal-oxide interface. In14th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Water Reactors, pp. 1407–18. Warrendale, PA: TMS
100. Hatano Y, Sugisaki M, Kitano K, Hayashi M. 2000. Role of intermetallic precipitates in hydrogen transport through oxide films on Zircaloy. In12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, pp. 901–17. West Conshohocken, PA: ASTM Int.
104. Hillner E. 1964.Hydrogen absorption in Zircaloy during aqueous corrosion: effect of environment. Res. Dev. Rep. WAPD-TM-411, US At. Energy Comm.
105. Adamson R, Garzarolli F, Cox B, Strasser A, Rudling P. 2007.Corrosion mechanisms in zirconium alloys. Rep., ANT Int.
106. Harada M, Wakamatsu R. 2008. The effect of hydrogen on the transition behavior of the corrosion rate of zirconium alloys. In15th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1505, pp. 384–400. West Conshohocken, PA: ASTM Int.
107. Une K, Sakamoto K, Aomi M, Matsunaga J, Etoh Y, et al. 2011. Hydrogen absorption mechanism of zirconium alloys based on characterization of oxide layer. In16th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1529, pp. 401–32. West Conshohocken, PA: ASTM Int.
108. Broy Y, Garzarolli F, Seibold A, VanSwam LF. 2000. Influence of transition elements Fe, Cr, and V on long-time corrosion in PWRs. In12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, pp. 609–22. West Conshohocken, PA: ASTM Int.
109. Kiselev AA. 1963.Research on the corrosion of zirconium alloys in water and steam at high temperature and pressure. Rep. AECL-1724, At. Energy Can.
110. Murai T, Isobe K, Takizawa Y, Mae Y. 2000. Fundamental study on the corrosion mechanism of Zr-0.2Fe, Zr-0.2Cr and Zr-0.1Fe-0.2Cr alloys. In12th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1354, pp. 623–40. West Conshohocken, PA: ASTM Int.
114. Kim Y-J, Rebak R, Lin Y-P, Lutz D, Crawford DC, et al. 2011. Photoelectrochemical investigation of radiation-enhanced shadow corrosion phenomenon. In16th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1529, pp. 91–116. West Conshohocken, PA: ASTM Int.
Fromhold AT, 1980, Theory of Metal Oxidation: Space Charge
121. Beie H-J, Mitwalsky A, Garzarolli F, Ruhmann H, Sell HJ. 1994. Examinations of the corrosion mechanism of zirconium alloys. In10th International Symposium on Zirconium in the Nuclear Industry, ASTM STP 1245, pp. 615–43. West Conshohocken, PA: ASTM Int.
122. Couet A, Motta AT, Ambard A. 2014. The coupled current charge compensation model for zirconium alloy fuel cladding oxidation. I. Parabolic oxidation of zirconium alloys.Corros. Sci.Submitted
123. Couet A, Motta AT, Ambard A. 2014.Oxide electronic conductivity and hydrogen pickup fraction in Zr alloys. Presented at Annual Meeting on Transactions of the American Nuclear Society and Embedded Topical Meeting: Nuclear Fuels and Structural Materials for the Next Generation Nuclear Reactors (NSFM 2014), Reno, Nev., June 15–19
124. Thomazet J, Dalmais A, Bossis P, Godlewski J, Blat M, Miquet A. 2005.The corrosion of the alloy M5: an overview. Presented at IAEA Technical Committee Meeting on Behavior of High Corrosion Zr-Based Alloys, Buenos Aires, Oct. 24–28
126. Couet A. 2014.Hydrogen pickup mechanism of zirconium alloys. PhD Thesis, Dep. Mech. Nucl. Eng., Penn State Univ.