Corrosion of 9Cr Steel in CO2 at Intermediate Temperature I: Mechanism of Void-Induced Duplex Oxide Formation
Tóm tắt
Under CO2 exposure at an intermediate temperature, typically 550 °C, 9Cr–1Mo steel forms a duplex oxide scale made of an outer magnetite layer and an almost-as-thick inner Fe–Cr rich spinel oxide layer. It is proposed that the inner Fe–Cr spinel layer grows according to a mechanism involving void formation at the oxide/metal interface. The driving force for pore formation is the outward magnetite growth: iron vacancies are injected at the oxide/metal interface then condense into voids. The fresh metallic surface made available is then oxidized by CO2, which diffuses fast through the scale. The physical aspects, the integrity and the nature of the scale are shown to be very dependent on the oxygen potential existing in the environment.
Tài liệu tham khảo
A. Moisseytsev and J. Sienicki, in Supercritical CO 2 Power Cycle Symposium (Troy, NY, 2009).
Y. Kato, T. Nitawaki, and Y. Muto, Nuclear Engineering and Design 230, 195 (2004).
L. N. Hierro, V. Rohr, P. J. Ennis, M. Schütze, and W. J. Quadakkers, Materials and Corrosion 56, 890 (2005).
D. R. Holmes, R. B. Hill, and L. M. Wyatt (eds.), Corrosion of Steels in CO 2 , (British Nuclear Energy Society, Reading University, Reading, 1974).
T. Furukawa, Y. Inagaki, and M. Aritomi, in ICONE 17 (Brussels, 2009).
G. Cao, M. Anderson, K. Shridharan, L. Tan, and T. Allen, in Supercritical CO 2 Power Cycle Symposium (Troy, NY, 2009).
M. Dunlevy, G. Eastwick, J. Gibbs, J. Lim, T. J. McKrell, and R. G. Ballinger, in Supercritical CO 2 Power Cycle Symposium (Troy, NY, 2009).
G. B. Gibbs, R. E. Pendlebury, and M. R. Wooton, in Corrosion of Steels in CO 2 (Reading University, Reading, 1974).
M. G. C. Cox, V. D. Scott, and B. McEnaney, Nature-Physical Science 237, 140 (1972).
M. G. C. Cox, B. McEnaney, and V. D. Scott, Philosophical Magazine 28, 309 (1973).
A. M. Pritchard and A. E. Truswell, in Corrosion of Steel in CO 2 (British Nuclear Energy Society, Reading University, Reading, 1974).
L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Delpech, G. Santarini, J. Favergeon, G. Moulin, M. Tabarant, and G. Picard, Corrosion Science 50, 2523 (2008).
L. Martinelli, F. Balbaud-Célérier, A. Terlain, S. Bosonnet, G. Picard, and G. Santarini, Corrosion Science 50, 2537 (2008).
L. Martinelli, F. Balbaud-Célérier, G. Picard, and G. Santarini, Corrosion Science 50, 2549 (2008).
F. Rouillard, G. Moine, M. Tabarant, and J. C. Ruiz, Oxidation of Metals (2011). doi:10.1007/s11085-011-9272-4.
F. Rouillard and L. Martinelli, Oxidation of Metals (2011). doi:10.1007/s11085-011-9273-3.
N. Bertrand, C. Desgranges, D. Poquillon, M. C. Laffont, and D. Monceau, Oxidation of Metals 73, 139 (2010).
M. R. Taylor, J. M. Calvert, D. G. Lees, and D. B. Meadowcroft, Oxidation of Metals 14, 497 (1980).
M. G. C. Cox, V. D. Scott, and B. McEnaney, Philosophical Magazine 26, 839 (1972).
L. Tomlinson and N. J. Cory, Corrosion Science 29, 939 (1989).
P. Kofstad, Oxidation of Metals 24, 265 (1985).
J. Robertson and M. I. Manning, Materials Science and Technology 4, 1064 (1988).
G. B. Gibbs, Oxidation of Metals 7, 265 (1973).
R. J. Hussey and M. J. Graham, Corrosion Science 21, 255 (1981).
A. Atkinson and D. W. Smart, Journal of the Electrochemical Society 135, 2886 (1988).
W. Przybilla and M. Schütze, Oxidation of Metals 58, 337 (2002).
A. G. Evans, D. Rajdev, and D. L. Douglass, Oxidation of Metals 4, 151 (1972).
W. Przybilla and M. Schutze, Oxidation of Metals 58, 103 (2002).
G. B. Gibbs and R. Hales, Corrosion Science 17, 487 (1977).
G. B. Gibbs, Oxidation of Metals 16, 147 (1981).
S. Mrowec, Corrosion Science 7, 563 (1967).
P. L. Surman and A. M. Brown, in Corrosion of Steels in CO 2 (Reading University, Reading, 1974).
M. Robbins, G. K. Wertheim, R. C. Sherwood, and D. N. E. Buchanan, Journal of Physics and Chemistry on Solids 32, 717 (1971).
W. D. Derbyshire and H. J. Yearian, Physical Review 112, 1603 (1958).
J. P. Hirth, B. Pieraggi, and R. A. Rapp, Acta Metallurgica et Materialia 43, 1065 (1995).
B. Pieraggi and R. A. Rapp, Acta Metallurgica 36, 1281 (1988).
D. Caplan, R. J. Hussey, G. I. Sproule, and M. J. Graham, Oxidation of Metals 14, 279 (1980).
P. I. Williams, R. G. Faulkner, L. W. Pinder, and D. J. Lees, Corrosion Science 27, 595 (1987).
J. Zurek, M. Michalik, F. Schmitz, T. U. Kern, L. Singheiser, and W. J. Quadakkers, Oxidation of Metals 63, 401 (2005).
T. Maruyama, M. Ueda, and K. Kawamura, Defect and Diffusion Forum 289–292, 1 (2009).
H. E. Evans, Materials at High Temperature 22, 155 (2005).
J. Ehlers, D. J. Young, E. J. Smaardijk, A. K. Tyagi, H. J. Penkalla, L. Singheiser, and W. J. Quadakkers, Corrosion Science 48, 3428 (2006).
G. M. Raynaud and R. A. Rapp, Oxidation of Metals 21, 89 (1984).
X. G. Zheng and D. J. Young, Oxidation of Metals 42, 163 (1994).
HSC Chemistry 5.11 (Outokumpu Research Oy, Pori, Finland, 2002).
M. Backhaus-Ricoult and R. Dieckmann, Berichte der Bunsengesellschaft für Physikalische Chemie 90, 690 (1986).