Corrosion behavior of GH3535 alloy in molten LiF–BeF2 salt
Tài liệu tham khảo
W.R. Grimes, Chemical research and development for molten salt breeder reactors, Oak Ridge National Laboratory, Report ORNL–TM–1853, 1967. doi: 10.2172/4355677.
Grimes, 1958, Chemical aspects of molten–fluoride–salt reactor fuels, 586
Briant, 1957, Molten fluorides as power reactor fuels, Nucl. Sci. Eng., 2, 797, 10.13182/NSE57-A35494
Beneš, 2020, 3.13-Molten salt reactor fuel and coolants, 609
Delpech, 2010, Molten fluorides for nuclear applications, Mater. Today, 13, 34, 10.1016/S1369-7021(10)70222-4
Serrano-López, 2013, Molten salts database for energy applications, Chem. Eng. Process., 73, 87, 10.1016/j.cep.2013.07.008
van der Meer, 2007, Thermal and physical properties of molten fluorides for nuclear applications, J. Nucl. Mater., 360, 16, 10.1016/j.jnucmat.2006.08.010
D.F. Williams, L.M. Toth, K.T. Clarno, Assessment of candidate molten salt coolants for the advanced high–temperature (AHTR), Oak Ridge National Laboratory, Report ORNL/TM–2006/12, 2006. doi: 10.2172/885975.
Deokattey, 2013, Hydrogen production using high temperature reactors: an overview, Adv. Energy Res., 1, 013, 10.12989/eri.2013.1.1.013
Elder, 2009, Nuclear heat for hydrogen production: coupling a very high/high temperature reactor to a hydrogen production plant, Prog. Nucl. Energ., 51, 500, 10.1016/j.pnucene.2008.11.001
J.H. Shaffer, Preparation and handling of salt mixtures for the molten salt reactor experiment, Oak Ridge National Laboratory, Report ONRL–4616, 1971. doi: 10.2172/4074869.
J.M. Chandler, S.E. Bolt, Preparation of enriching salt LiF–UF4 for refueling the molten salt reactor, Oak Ridge National Laboratory, Report ONRL–4371, 1969. doi: 10.2172/4815547.
R.B. Lindauer, MSRE design and operations report part II: fuel handling and pressing plant, Oak Ridge National Laboratory, Report ONRL–TM–907, 1967. doi: 10.2172/4638649.
U. S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, A technology roadmap for generation IV nuclear energy systems, Technical Report GIF–002–00, 2002. doi: 10.2172/859029.
Ouyang, 2014, Long-term corrosion behaviors of Hastelloy–N and Hastelloy–B3 in moisture-containing molten FLiNaK salt environments, J. Nucl. Mater., 446, 81, 10.1016/j.jnucmat.2013.11.045
Wang, 2016, Effects of the oxidations H2O and CrF3 on the corrosion of pure metals in molten (Li, Na, K)F, Corros. Sci., 103, 268, 10.1016/j.corsci.2015.11.032
Zhu, 2017, Effects of SO42− ions on the corrosion of GH3535 weld joint in FLiNaK molten salt, J. Nucl. Mater., 492, 122, 10.1016/j.jnucmat.2017.05.020
Ai, 2019, Effects of O2- additive on corrosion behavior of Fe–Cr–Ni alloy in molten fluoride salts, Corros. Sci., 150, 175, 10.1016/j.corsci.2019.01.040
Pavlík, 2015, Corrosion behavior of Incoloy 800H/HT in the fluoride molten salt FLiNaK+MFx (MFx=CrF3, FeF2, FeF3 and NiF2), New J. Chem., 39, 9841, 10.1039/C5NJ01839K
Yin, 2018, Effect of CrF3 on the corrosion behavior of Hastelloy–N and 316L stainless stee alloys in FLiNaK molten salt, Corros. Sci., 131, 355, 10.1016/j.corsci.2017.12.008
Doniger, 2020, Investigation of impurity driven corrosion behavior in molten 2LiF–BeF2 salt, Corros. Sci., 174, 10.1016/j.corsci.2020.108823
Sridharan, 2013, 12 – Corrosion in molten salts, 241
Qiu, 2015, Speciation study of chromium corrosion product in molten LiF–NaF–KF salt, Nucl. Sci. Tech., 26
Wang, 2014, Galvanic corrosion of pure metals in molten fluorides, J. Fluor. Chem., 165, 1, 10.1016/j.jfluchem.2014.05.010
J.H. Devan, Corrosion Behavior of reactor materials in fluoride salt mixtures, Oak Ridge National Laboratory, Report ORNL–TM–328, 1962. doi: 10.2172/4774669.
Gibilaro, 2015, a way to limit the corrosion in the molten salt reactor concept: the salt redox potential control, Electrochim. Acta, 160, 209, 10.1016/j.electacta.2015.01.142
R.B. Briggs, Molten–salt reactor program semiannual progress report, Oak Ridge National Laboratory, Report ORNL–3708, 1964. doi: 10.2172/4676587.
J.W. Koger, Evaluation of Hstelloy N alloys after nine years exposure to both a molten fluoride salt and at temperature from 700 to 560℃, Oak Ridge National Laboratory, Report ORNL-TM-4189, 1972. doi: 10.2172/4468052.
J.R. Keiser, Compatibility studies of potential molten-salt breeder reactor materials in molten fluoride salts, Oak Ridge National Laboratory, Report ORNL/TM–5783, 1977. doi: 10.2172/7257097.
Zheng, 2015, Corrosion of 316 stainless steel in high temperature molten Li2BeF4 (FLiBe) salt, J. Nucl. Mater., 461, 143, 10.1016/j.jnucmat.2015.03.004
Jiang, 2018, Formation of nano–sized M2C carbides in Si–free GH3535 alloy, Sci. Rep., 8, 8158, 10.1038/s41598-018-26426-0
M.S. Sohal, M.A. Ebner, P. Sabarwall, P. Sharpe, Engineering database of liquid salt thermophysical and thermochemical properties, Idaho National Laboratory, Technical Report INL/EXT–10–18297, 2010. doi: 10.2172/1086824.
Berry, 1971, 381
Scott, 1960, Formation of beryllium carbide during the corrosion of beryllium in carbon monoxide and in carbon dioxide gas, Nature, 186, 466, 10.1038/186466a0