Corrosion-Resistant High-Entropy Alloys: A Review
Tóm tắt
Corrosion destroys more than three percent of the world’s gross domestic product. Therefore, the design of highly corrosion-resistant materials is urgently needed. By breaking the classical alloy-design philosophy, high-entropy alloys (HEAs) possess unique microstructures, which are solid solutions with random arrangements of multiple elements. The particular locally-disordered chemical environment is expected to lead to unique corrosion-resistant properties. In this review, the studies of the corrosion-resistant HEAs during the last decade are summarized. The corrosion-resistant properties of HEAs in various aqueous environments and the corrosion behavior of HEA coatings are presented. The effects of environments, alloying elements, and processing methods on the corrosion resistance are analyzed in detail. Furthermore, the possible directions of future work regarding the corrosion behavior of HEAs are suggested.
Từ khóa
Tài liệu tham khảo
Koch, G.H., Brongers, M.P., Thompson, N.G., Virmani, Y.P., and Payer, J.H. (2001). Corrosion Cost and Preventive Strategies in the United States.
Cramer, S.D., and Covino, B.S. (2003). ASM Handbook, Volume 13A—Corrosion: Fundamentals, Testing, and Protection, ASM International.
Nilsson, 1993, Influence of isothermal phase transformations on toughness and pitting corrosion of super duplex stainless steel SAF 2507, Mater. Sci. Technol., 9, 545, 10.1179/mst.1993.9.7.545
2006, Microstructure and pitting corrosion resistance of annealed duplex stainless steel, Corros. Sci., 48, 3887, 10.1016/j.corsci.2006.04.003
Wang, 2013, Effect of sigma phase precipitation on the mechanical and wear properties of Z3CN20.09M cast duplex stainless steel, Nucl. Eng. Des., 259, 1, 10.1016/j.nucengdes.2013.02.037
Yeh, 2004, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6, 299, 10.1002/adem.200300567
Cantor, 2004, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., 375–377, 213, 10.1016/j.msea.2003.10.257
Zhang, 2014, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61, 1, 10.1016/j.pmatsci.2013.10.001
Zhang, 2008, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater., 10, 534, 10.1002/adem.200700240
Senkov, 2010, Refractory high-entropy alloys, Intermetallics, 18, 1758, 10.1016/j.intermet.2010.05.014
Gao, M.C., Yeh, J.W., Liaw, P.K., and Zhang, Y. (2016). High-Entropy Alloys: Fundamentals and Applications, Springer.
Gao, 2016, High-entropy alloys in hexagonal close-packed structure, Metall. Mater. Trans. A, 47, 3322, 10.1007/s11661-015-3091-1
Feuerbacher, 2015, Hexagonal high-entropy alloys, Mater. Res. Lett., 3, 1, 10.1080/21663831.2014.951493
Youssef, 2015, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3, 95, 10.1080/21663831.2014.985855
Diao, 2015, Local structures of high-entropy alloys (HEAs) on atomic scales: An overview, JOM, 67, 2321, 10.1007/s11837-015-1591-5
Chen, 2005, Microstructure and electrochemical properties of high entropy alloys—A comparison with type-304 stainless steel, Corros. Sci., 47, 2257, 10.1016/j.corsci.2004.11.008
Chen, 2005, Electrochemical kinetics of the high entropy alloys in aqueous environments—A comparison with type 304 stainless steel, Corros. Sci., 47, 2679, 10.1016/j.corsci.2004.09.026
Tang, 2014, Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys, Entropy, 16, 895, 10.3390/e16020895
Qiu, 2015, Corrosion characteristics of high entropy alloys (heas), J. Mater. Sci. Technol., 31, 1235, 10.1179/1743284715Y.0000000026
Liu, 2015, Oxidation behavior of high-entropy alloys AlxCoCrFeNi (x = 0.15, 0.4) in supercritical water and comparison with HR3C steel, Trans. Nonferr. Met. Soc. China, 25, 1341, 10.1016/S1003-6326(15)63733-5
Shi, Y., Yang, B., Xie, X., Brechtl, J., Dahmen, K.A., and Liaw, P.K. Corrosion of AlxCoCrFeNi high-entropy alloys: Al-content and potential scan-rate dependent pittng behavior. Corros. Sci., under review.
Senkov, 2014, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68, 214, 10.1016/j.actamat.2014.01.029
Li, 2016, Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off, Nature, 534, 227, 10.1038/nature17981
Hemphill, 2012, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60, 5723, 10.1016/j.actamat.2012.06.046
Tang, 2015, Fatigue behavior of a wrought Al0.5CoCrCuFeNi two-phase high-entropy alloy, Acta Mater., 99, 247, 10.1016/j.actamat.2015.07.004
Seifi, 2015, Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys, JOM, 67, 2288, 10.1007/s11837-015-1563-9
Gludovatz, 2014, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345, 1153, 10.1126/science.1254581
Zhang, 2015, Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 6, 10143, 10.1038/ncomms10143
Santodonato, 2015, Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy, Nat. Commun., 6, 5964, 10.1038/ncomms6964
Ye, 2011, Synthesis and characterization of high-entropy alloy FeCoNiCuCr by laser cladding, Adv. Mater. Sci. Eng., 2011, 1, 10.1155/2011/485942
Zhang, 2011, Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding, Appl. Surf. Sci., 257, 2259, 10.1016/j.apsusc.2010.09.084
Cheng, 2014, Effect of Nb addition on the structure and mechanical behaviors of CoCrCuFeNi high-entropy alloy coatings, Surf. Coat. Technol., 240, 184, 10.1016/j.surfcoat.2013.12.053
Shon, 2015, Laser additive synthesis of high entropy alloy coating on aluminum: Corrosion behavior, Mater. Lett., 142, 122, 10.1016/j.matlet.2014.11.161
Li, 2012, Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 steel by the electrospark process, Metall. Mater. Trans. A, 44, 1767, 10.1007/s11661-012-1535-4
An, 2015, Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition, Mater. Res. Lett., 3, 203, 10.1080/21663831.2015.1048904
Dou, 2016, Coatings of FeAlCoCuNiV high entropy alloy, Surf. Eng., 32, 766, 10.1080/02670844.2016.1148380
Li, 2016, Microstructure and properties of coating of FeAlCuCrCoMn high entropy alloy deposited by direct current magnetron sputtering, Mater. Res., 19, 802, 10.1590/1980-5373-MR-2015-0536
Zhang, 2016, Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance, Opt. Laser Technol., 84, 23, 10.1016/j.optlastec.2016.04.011
Xiang, 2016, Corrosion behavior of several high-entropy alloys in high temperature high pressurewater, J. Chin. Soc. Corros. Prot., 36, 108
Jakab, 2008, Corrosion-resistant metallic coatings, Mater. Today, 11, 14, 10.1016/S1369-7021(08)70203-7
Lee, 2008, Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments, Corros. Sci., 50, 2053, 10.1016/j.corsci.2008.04.011
Kao, 2010, Electrochemical passive properties of alxcocrfeni (x = 0, 0.25, 0.50, 1.00) alloys in sulfuric acids, Corros. Sci., 52, 1026, 10.1016/j.corsci.2009.11.028
Lee, 2008, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid, Thin Solid Films, 517, 1301, 10.1016/j.tsf.2008.06.014
Hsu, 2005, Corrosion behavior of FeCoNiCrCux high-entropy alloys in 3.5% sodium chloride solution, Mater. Chem. Phys., 92, 112, 10.1016/j.matchemphys.2005.01.001
Chou, 2010, The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments, Corrosi. Sci., 52, 2571, 10.1016/j.corsci.2010.04.004
Chou, 2011, Effect of inhibitors on the critical pitting temperature of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1, J. Electrochem. Soc., 158, C246, 10.1149/1.3600348
Chou, 2010, Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corros. Sci., 52, 3481, 10.1016/j.corsci.2010.06.025
Ren, B., Liu, Z.X., Li, D.M., Shi, L., Cai, B., and Wang, M.X. (2011). Corrosion behavior of CuCrFeNiMn high entropy alloy system in 1 M sulfuric acid solution. Mater. Corros., 828–834.
Pourbaix, M. (1974). Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE International.
Lee, 2007, The effect of boron on the corrosion resistance of the high entropy alloys Al0.5CoCrCuFeNiBx, J. Electrochem. Soc., 154, C424, 10.1149/1.2744133
Zhang, 2011, Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding, Mater. Des., 32, 1910, 10.1016/j.matdes.2010.12.001
Ye, 2011, The property research on high-entropy alloy alxfeconicucr coating by laser cladding, Phys. Procedia, 12, 303, 10.1016/j.phpro.2011.03.039
Qiu, 2014, Effect of Ti content on structure and properties of Al2CrFeNiCoCuTix high-entropy alloy coatings, J. Alloys Compd., 585, 282, 10.1016/j.jallcom.2013.09.083
Qiu, 2013, Microstructure and properties of Al2CrFeCoCuTiNix high-entropy alloys prepared by laser cladding, J. Alloys Compd., 553, 216, 10.1016/j.jallcom.2012.11.100
Qiu, 2013, Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy, J. Alloys Compd., 549, 195, 10.1016/j.jallcom.2012.09.091
Lin, 2010, Effect of aging treatment on microstructure and properties of high-entropy Cu0.5CoCrFeNi alloy, Intermetallics, 18, 1244, 10.1016/j.intermet.2010.03.030
Lin, 2011, Evolution of microstructure, hardness, and corrosion properties of high-entropy Al0.5CoCrFeNi alloy, Intermetallics, 19, 288, 10.1016/j.intermet.2010.10.008
Feng, R., Gao, M., Lee, C., Mathes, M., Zuo, T., Chen, S., Hawk, J., Zhang, Y., and Liaw, P. (2016). Design of light-weight high-entropy alloys. Entropy, 18.
Zhang, 2016, Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys, Mater. Des., 109, 425, 10.1016/j.matdes.2016.07.073
Kwok, 2000, Synergistic effect of cavitation erosion and corrosion of various engineering alloys in 3.5% NaCl solution, Mater. Sci. Eng. A, 290, 145, 10.1016/S0921-5093(00)00899-6
Sundaram, 2007, A study of the corrosion behavior of gamma titanium aluminide in 3.5 wt % nacl solution and seawater, Corros. Sci., 49, 3732, 10.1016/j.corsci.2007.04.001
Malik, 2008, Effect of seawater level on corrosion behavior of different alloys, Desalination, 228, 61, 10.1016/j.desal.2007.08.007
Peng, 2006, Electrochemical corrosion performance in 3.5% NaCl of the electrodeposited Nanocrystalline Ni films with and without dispersions of Cr nanoparticles, Electrochim. Acta, 51, 4922, 10.1016/j.electacta.2006.01.035
Ezuber, 2008, A study on the corrosion behavior of aluminum alloys in seawater, Mater. Des., 29, 801, 10.1016/j.matdes.2007.01.021
Wang, 2014, Effect of ferrite on pitting corrosion of Fe20Cr9Ni cast austenite stainless steel for nuclear power plant pipe, Corros. Eng. Sci. Technol., 50, 330, 10.1179/1743278214Y.0000000229
Sarkar, 2005, Microstructural influence on the electrochemical corrosion behaviour of dual-phase steels in 3.5% NaCl solution, Mater. Lett., 59, 2488, 10.1016/j.matlet.2005.03.030
McCafferty, 2005, Validation of corrosion rates measured by the TaFel extrapolation method, Corros. Sci., 47, 3202, 10.1016/j.corsci.2005.05.046
Hong, 2012, Corrosion behaviour of copper containing low alloy steels in sulphuric acid, Corros. Sci., 54, 174, 10.1016/j.corsci.2011.09.012
Park, 2012, Effect of chromium on the corrosion behavior of low alloy steel in sulfuric acid, Met. Mater. Int., 18, 975, 10.1007/s12540-012-6009-0
Baik, 2016, The study of corrosion behavior for solution and aging heat treated Ti alloy, J. Korean Soc. Mar. Environ. Saf., 22, 138, 10.7837/kosomes.2016.22.1.138
Lu, 2002, Corrosion resistance of ternary Ni-p based alloys in sulfuric acid solutions, Electrochim. Acta, 47, 2969, 10.1016/S0013-4686(02)00198-6