Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon, 2000, Degrees and choice numbers, Random Structures Algorithms, 16, 364, 10.1002/1098-2418(200007)16:4<364::AID-RSA5>3.0.CO;2-0
Appel, 1977, Every planar map is four colorable. Part I: Discharging, Illinois J. Math., 21, 429
Bernshteyn, 2016, The asymptotic behavior of the correspondence chromatic number, Discrete Math., 339, 2680, 10.1016/j.disc.2016.05.012
Bernshteyn
Bernshteyn, 2017, On DP-coloring of graphs and multigraphs, Sib. Mat. J., 58, 28, 10.1134/S0037446617010049
M. Bonamy, T. Perrett, L. Postle, Colouring graphs with sparse neighbourhoods: Bounds and applications, manuscript, 2016.
Borodin, 1996, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory, 21, 183, 10.1002/(SICI)1097-0118(199602)21:2<183::AID-JGT7>3.0.CO;2-N
Borodin, 2013, Colorings of plane graphs: a survey, Discrete Math., 313, 517, 10.1016/j.disc.2012.11.011
Borodin, 2009, Planar graphs without 5- and 7-cycles and without adjacent triangles are 3-colorable, J. Combin. Theory Ser. B, 99, 668, 10.1016/j.jctb.2008.11.001
Borodin, 2005, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B, 93, 303, 10.1016/j.jctb.2004.11.001
Cohen-Addad, 2016, Steinberg's conjecture is false, J. Combin. Theory Ser. B, 122, 452, 10.1016/j.jctb.2016.07.006
Grötzsch, 1959, Ein Dreifarbensatz für Dreikreisfreie Netze auf der Kugel, Math.-Natur. Reihe, 8, 109
Steinberg, 1993, The state of the three color problem. Quo Vadis, Graph Theory?, Ann. Discrete Math., 55, 211, 10.1016/S0167-5060(08)70391-1
Thomassen, 1994, Every planar graph is 5-choosable, J. Combin. Theory Ser. B, 62, 180, 10.1006/jctb.1994.1062
Thomassen, 1995, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B, 64, 101, 10.1006/jctb.1995.1027
Voigt, 1993, List colourings of planar graphs, Discrete Math., 120, 215, 10.1016/0012-365X(93)90579-I
Voigt, 1995, A not 3-choosable planar graph without 3-cycles, Discrete Math., 146, 325, 10.1016/0012-365X(94)00180-9