Correlative digital image correlation and infrared thermography measurements for the investigation of the mesoscopic deformation behaviour of foams
Tài liệu tham khảo
Antenucci, 2014, Improvement of the mechanical and thermal characteristics of open cell aluminum foams by the electrodeposition of cu, Mater. Des., 59, 124, 10.1016/j.matdes.2014.03.004
Ashby, 2006, The properties of foams and lattices, Philos. Trans. R. Soc. Lond. A, 364, 15, 10.1098/rsta.2005.1678
Ashby, 2000
Bagavathiappan, 2013, Infrared thermography for condition monitoring–a review, Infrared Phys. Technol., 60, 35, 10.1016/j.infrared.2013.03.006
Banhart, 2001, Manufacture, characterisation and application of cellular metals and metal foams, Prog. Mater. Sci., 46, 559, 10.1016/S0079-6425(00)00002-5
Bart-Smith, 1998, Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping, Acta Mater., 46, 3583, 10.1016/S1359-6454(98)00025-1
Bastawros, 2000, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, J. Mech. Phys. Solids, 48, 301, 10.1016/S0022-5096(99)00035-6
Bastawros, 1999, Case study: use of digital image analysis software to measure non-uniform deformation in cellular aluminum alloys, Comput. Stand. Interfaces, 20, 459, 10.1016/S0920-5489(99)90990-X
Bastawros, 2000, Deformation heterogeneity in cellular Al alloys, Adv. Eng. Mater., 2, 210, 10.1002/(SICI)1527-2648(200004)2:4<210::AID-ADEM210>3.0.CO;2-Z
Boonyongmaneerat, 2008, Mechanical properties of reticulated aluminum foams with electrodeposited Ni–W coatings, Scripta Mater., 59, 336, 10.1016/j.scriptamat.2008.03.035
Bouwhuis, 2009, Mechanical properties of hybrid nanocrystalline metal foams, Acta Mater., 57, 4046, 10.1016/j.actamat.2009.04.053
Breitenstein, 2010, 10
Chrysafi, 2017, Damage detection on composite materials with active thermography and digital image processing, Int. J. Therm. Sci., 116, 242, 10.1016/j.ijthermalsci.2017.02.017
Chu, 1985, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech., 25, 232, 10.1007/BF02325092
Clarke, 1986, Void detection in polyurethane foam using thermographic imaging, J. Cell. Plastics, 22, 404, 10.1177/0021955X8602200503
Crupi, 2010, Low-velocity impact strength of sandwich materials, J. Sandwich Struct. Mater
Degischer, 2002
Dolce, 2001, Mechanical behaviour of shape memory alloys for seismic applications 1. Martensite and austenite niti bars subjected to torsion, Int. J. Mech. Sci., 43, 2631, 10.1016/S0020-7403(01)00049-2
Dolce, 2001, Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite niti wires subjected to tension, Int. J. Mech. Sci., 43, 2657, 10.1016/S0020-7403(01)00050-9
Duarte, 2014, Dynamic and quasi-static bending behaviour of thin-walled aluminium tubes filled with aluminium foam, Compos. Struct., 109, 48, 10.1016/j.compstruct.2013.10.040
Duarte, 2015, Manufacturing and bending behaviour of in situ foam-filled aluminium alloy tubes, Mater. Des., 66, 532, 10.1016/j.matdes.2014.04.082
Duarte, 2015, Static and dynamic axial crush performance of in-situ foam-filled tubes, Compos. Struct., 124, 128, 10.1016/j.compstruct.2015.01.014
Evans, 2001, The topological design of multifunctional cellular metals, Prog. Mater. Sci., 46, 309, 10.1016/S0079-6425(00)00016-5
Fíla, 2016, Identification of strain fields in pure Al and hybrid Ni/Al metal foams using X-ray microtomography under loading, J. Instrum., 11, C11017, 10.1088/1748-0221/11/11/C11017
Fischer, 2016, Energy absorption efficiency of open-cell pure aluminum foams, Mater. Lett., 184, 208, 10.1016/j.matlet.2016.08.061
Frey, 2016, Open cell foam catalysts for CO2 methanation: presentation of coating procedures and in situ exothermicity reaction study by infrared thermography, Catal. Today, 273, 83, 10.1016/j.cattod.2016.03.016
García-Moreno, 2016, Commercial applications of metal foams: their properties and production, Materials, 9, 85, 10.3390/ma9020085
Jiroušek, 2013, X-ray and finite element analysis of deformation response of closed-cell metal foam subjected to compressive loading, J. Instrum., 8, C02012, 10.1088/1748-0221/8/02/C02012
Jiroušek, 2011, Evaluation of strain field in microstructures using micro-ct and digital volume correlation, J. Instrum., 6, C01039, 10.1088/1748-0221/6/01/C01039
Jiroušek, 2011, Strain analysis of trabecular bone using time-resolved x-ray microtomography, Nucl. Instrum. Methods Phys. Res. Sect. A, 633, S148, 10.1016/j.nima.2010.06.151
Jung, 2018, Thermographic investigation of strain rate effects in Al foams and Ni/Al hybrid foams, Mater. Des., 10.1016/j.matdes.2018.09.020
Jung, 2016, Micromechanical characterisation of ni/al hybrid foams by nano- and microindentation coupled with EBSD, Acta Mater., 102, 38, 10.1016/j.actamat.2015.09.018
Jung, 2016, Synthesis and mechanical properties of novel ni/PU hybrid foams: a new economic composite material for energy absorbers, Adv. Eng. Mater., 18, 532, 10.1002/adem.201500405
Jung, 2017, Microstructural characterisation and experimental determination of a multiaxial yield surface for open-cell aluminium foams, Mater. Des., 131, 252, 10.1016/j.matdes.2017.06.017
Jung, 2018, Yield surfaces for solid foams: a review on experimental characterization and modeling, GAMM-Mitteilungen, 41, e201800002, 10.1002/gamm.201800002
Jung, 2014, Microstructural analysis of electrochemical coated open-cell metal foams by ebsd and nanoindentation, Adv. Eng. Mater., 16, 15, 10.1002/adem.201300187
Jung, 2018, In-situ and ex-situ microtensile testing of individual struts of al foams and ni/al hybrid foams, Mater. Design, 153, 104, 10.1016/j.matdes.2018.04.075
Jung, 2017, Investigation of strain-rate effects in al foams and ni/al hybrid foams on different scales, Proc. Appl. Math. Mech., 17, 317, 10.1002/pamm.201710128
Jung, 2011, Nanonickel coated aluminum foam for enhanced impact energy absorption, Adv. Eng. Mater., 13, 23, 10.1002/adem.201000190
Jung, 2015, Microtensile testing of open-cell metal foams – experimental setup, micromechanical properties, Mater. Des., 88, 1021, 10.1016/j.matdes.2015.09.091
Kaya, 2014, Deformation behavior of open-cell stainless steel foams, Mater. Sci. Eng. A, 615, 447, 10.1016/j.msea.2014.07.098
Kottar, 2000, Röntgen-computertomographie zur charakterisierung von zellularem aluminium und seiner verformung, Materialwissensch. Werkstofftech., 31, 465, 10.1002/1521-4052(200006)31:6<465::AID-MAWE465>3.0.CO;2-G
Krstulović-Opara, 2015, Comparison of infrared and 3d digital image correlation techniques applied for mechanical testing of materials, Infrared Phys. Technol., 73, 166, 10.1016/j.infrared.2015.09.014
Krstulović-Opara, 2016, Infrared thermography as a method for energy absorption evaluation of metal foams, Mater. Today, 3, 1025, 10.1016/j.matpr.2016.03.041
Lahiri, 2012, Medical applications of infrared thermography: a review, Infrared Phys. Technol., 55, 221, 10.1016/j.infrared.2012.03.007
Maldague, 2000, Applications of infrared thermography in nondestructive evaluation, Trends Opt. Nondestruct. Test., 591
Maldague, 2012
Markaki, 2001, The effect of cell wall microstructure on the deformation and fracture of aluminium-based foams, Acta Mater., 49, 1677, 10.1016/S1359-6454(01)00072-6
Meola, 2004, Recent advances in the use of infrared thermography, Meas. Sci. Technol., 15, R27, 10.1088/0957-0233/15/9/R01
Meola, 2004, The use of infrared thermography for materials characterization, J. Mater. Process. Technol., 155, 1132, 10.1016/j.jmatprotec.2004.04.268
Nemat-Nasser, 2013
Nieh, 2000, Effect of cell morphology on the compressive properties of open-cell aluminum foams, Mater. Sci. Eng. A, 283, 105, 10.1016/S0921-5093(00)00623-7
Nieh, 1998, Morphology and elastic properties of aluminum foams produced by a casting technique, Scripta Mater, 38, 1487, 10.1016/S1359-6462(98)00090-6
Pan, 2009, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas Sci Technol, 20, 062001, 10.1088/0957-0233/20/6/062001
Pehilj, 2017, The detection of plastic flow propagation based on the temperature gradient, Mater. Today, 4, 5925, 10.1016/j.matpr.2017.06.071
Prakash, 2012
San Marchi, 2001, Deformation of open-cell aluminum foam, Acta Mater., 49, 3959, 10.1016/S1359-6454(01)00294-4
Schaedler, 2016, Architected cellular materials, Annu. Rev. Mater. Res., 46, 187, 10.1146/annurev-matsci-070115-031624
2005, Cellular Ceramics: Structure, Manufacturing, Properties and Applications
Schmidt, 2016, Elastocaloric cooling processes: the influence of material strain and strain rate on efficiency and temperature span, APL Mater., 4, 064107, 10.1063/1.4953433
Schmidt, 2015, Thermal stabilization of niticuv shape memory alloys: observations during elastocaloric training, Shape Memory Superelast., 1, 132, 10.1007/s40830-015-0021-4
Solórzano, 2009, Thermographic monitoring of aluminium foaming process, J. Nondestruct. Eval., 28, 141, 10.1007/s10921-009-0056-6
Sun, 2015, Modeling and simulation of the quasi-static compressive behavior of Al/Cu hybrid open-cell foams, Int. J. Solids Struct., 54, 135, 10.1016/j.ijsolstr.2014.10.030
Sutton, 1991, Full-field representation of discretely sampled surface deformation for displacement and strain analysis, Exp. Mech., 31, 168, 10.1007/BF02327571
Thornton, 1975, The deformation of aluminum foams, Metallurg. Trans. A, 6, 1253, 10.1007/BF02658535
Verhulp, 2004, A three-dimensional digital image correlation technique for strain measurements in microstructures, J. Biomech., 37, 1313, 10.1016/j.jbiomech.2003.12.036
Vesenjak, 2013, Characterization of irregular open-cell cellular structure with silicone pore filler, Polym. Test., 32, 1538, 10.1016/j.polymertesting.2013.10.005
Vesenjak, 2016, Dynamic compression of aluminium foam derived from infiltration casting of salt dough, Mech. Mater., 93, 96, 10.1016/j.mechmat.2015.10.012
Vollmer, 2017
Wang, 2016, A methodology for characterizing the interfacial fracture toughness of sandwich structures using high speed infrared thermography, Exp. Mech., 56, 121, 10.1007/s11340-015-0023-3
Zhang, 2013, Local tomography study of the fracture of an erg metal foam, Adv. Eng. Mater., 15, 767, 10.1002/adem.201300004
Zhou, 2004, Effects of heat treatment on the compressive deformation behavior of open cell aluminum foams, Mater. Sci. Eng. A, 386, 118, 10.1016/S0921-5093(04)00933-5
Zhou, 2004, Mechanisms and mechanics of compressive deformation in open-cell Al foams, Mech. Mater., 36, 781, 10.1016/j.mechmat.2003.05.004