Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using ‘‘flow focusing’’ in microchannels. Appl Phys Lett 82:364–366
Cristini V, Tan YC (2004) Theory and numerical simulation of droplet dynamics in complex flows–a review. Lab Chip 4:257–264
Cygan ZT, Cabral JT, Beers KL, Amis EJ (2005) Microfluidic platform for the generation of organic-phase microreactors. Langmuir 21:3629–3634
Garstecki P, Fuerstman MJ, Stonec HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–446
Gong TY, Shen JY, Hu ZB, Marquez M, Cheng Z (2007) Nucleation rate measurement of colloidal crystallization using microfluidic emulsion droplets. Langmuir 23:2919–2923
Husny J, Cooper-White JJ (2006) The effect of elasticity on drop creation in T-shaped microchannels. J Non-Newtonian Fluid Mech 137:121–136
Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fujita H (2001) Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE J 48:1639–1644
Kumemura M, Korenaga T (2006) Quantitative extraction using flowing nano-liter droplet in microfluidic system. Anal Chim Acta 558:75–79
Menech MD, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161
Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101:23–29
Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42(7):767–772
Sugiura S, Nakajima M, Seki M (2004) Prediction of droplet diameter for microchannel emulsification: prediction model for complicated microchannel geometries. Ind Eng Chem Res 43:8233–8238
Sun M, Du WB, Fang Q (2006) Microfluidic liquid–liquid extraction system based on stopped-flow technique and liquid core waveguide capillary. Talanta 70:392–396
Takagi M, Maki T, Miyahara M, Mae K (2004) Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem Eng J 101:269–273
Tan J, Xu JH, Li SW, Luo GS (2008) Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem Eng J 136(2–3):306–311
Thorsen T, Roberts R, Arnold F, Quake S (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166
Tice JD, Song H, Lyon AD, Ismagilov RF (2003) Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers. Langmuir 19:9127–9133
Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541
Xu Q, Nakajima M (2004) The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Appl Phys Lett 85:3726–3728
Xu S, Nie Z, Seo M, Lewis P, Kumacheva E, Stone HA, Garstechi P, Weibel DB, Gitlin I, Whitesides GM (2005) Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew Chem Int Ed 44:724–728
Xu JH, Luo GS, Li SW, Chen GG (2006a) Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab Chip 6:131–136
Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006b) Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE J 52(9):3005–3010
Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006c) Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir 22(19):7943–7946
Yanagishita T, Tomabechi Y, Nishio K, Masuda H (2004) Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina. Langmuir 20:554–555
Zheng B, Tice JD, Roach LS, Ismagilov RF (2004) A droplet-based, composite PDMS/glass capillary microfluidic system for evaluating protein crystallization conditions by microbatch and vapor-diffusion methods with on-chip X-ray diffraction. Angew Chem Int Ed 43:2508–2511
Zhou C, Yue P, Feng JJ (2006) Formation of simple and compound drops in microfluidic devices. Phys Fluids 18(092105):1–14