Correlations between the hierarchical spatial heterogeneity and the mechanical properties of metallic glasses
Tài liệu tham khảo
Miracle, 2004, A structural model for metallic glasses, Nat Mater, 3, 697, 10.1038/nmat1219
Sheng, 2006, Atomic packing and short-to-medium-range order in metallic glasses, Nature, 439, 419, 10.1038/nature04421
Ma, 2009, Power-law scaling and fractal nature of medium-range order in metallic glasses, Nat Mater, 8, 30, 10.1038/nmat2340
Liu, 2010, Metallic liquids and glasses: atomic order and global packing, Phys Rev Lett, 105, 10.1103/PhysRevLett.105.155501
Zeng, 2011, Long-range topological order in metallic glass, Science, 332, 1404, 10.1126/science.1200324
Hirata, 2013, Geometric frustration of icosahedron in metallic glasses, Science, 341, 376, 10.1126/science.1232450
Cheng, 2011, Atomic-level structure and structure–property relationship in metallic glasses, Prog Mater Sci, 56, 379, 10.1016/j.pmatsci.2010.12.002
Spaepen, 1977, A microscopic mechanism for steady state inhomogeneous flow in metallic glasses, Acta Metall, 25, 407, 10.1016/0001-6160(77)90232-2
T.J.J. Egami, Understanding the properties and structure of metallic glasses at the atomic level, 62 (2010) 70-75.
Zhang, 2015, Cooling rates dependence of medium-range order development inCu64.5Zr35.5metallic glass, Phys Rev B, 91
Ding, 2014, Full icosahedra dominate local order in Cu64Zr34 metallic glass and supercooled liquid, Acta Mater, 69, 343, 10.1016/j.actamat.2014.02.005
Liu, 2012, The activation energy and volume of flow units of metallic glasses, Scr Mater, 67, 9, 10.1016/j.scriptamat.2012.03.009
Lu, 2014, Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses, Phys Rev Lett, 113, 10.1103/PhysRevLett.113.045501
Wang, 2015, On the source of plastic flow in metallic glasses: Concepts and models, Intermetallics, 67, 81, 10.1016/j.intermet.2015.08.004
Liu, 2013, A quasi-phase perspective on flow units of glass transition and plastic flow in metallic glasses, J Non Cryst Solids, 376, 76, 10.1016/j.jnoncrysol.2013.04.053
Turnbull, 1961, Free-volume model of the amorphous phase: glass transition, J Chem Phys, 34, 120, 10.1063/1.1731549
Turnbull, 1970, On the free-volume model of the liquid-glass transition, J Chem Phys, 52, 3038, 10.1063/1.1673434
Derlet, 2020, Correlated disorder in a model binary glass through a local SU(2) bonding topology, Phys Rev Mater, 4
Cao, 2009, Structural processes that initiate shear localization in metallic glass, Acta Mater, 57, 5146, 10.1016/j.actamat.2009.07.016
Yu, 2017, Slower icosahedral cluster rejuvenation drives the brittle-to-ductile transition in nanoscale metallic glasses, Comput Mater Sci, 140, 235, 10.1016/j.commatsci.2017.08.038
Lee, 2011, Networked interpenetrating connections of icosahedra: Effects on shear transformations in metallic glass, Acta Mater, 59, 159, 10.1016/j.actamat.2010.09.020
Falk, 1998, Dynamics of viscoplastic deformation in amorphous solids, Phys Rev E, 57, 7192, 10.1103/PhysRevE.57.7192
A.J.A.m. Argon, Plastic deformation in metallic glasses, 27 (1979) 47-58.
Wang, 2019, Flow units as dynamic defects in metallic glassy materials, Natl Sci Rev, 6, 304, 10.1093/nsr/nwy084
Cubuk, 2017, Structure-property relationships from universal signatures of plasticity in disordered solids, Science, 358, 1033, 10.1126/science.aai8830
Wei, 2019, Revisiting the structure–property relationship of metallic glasses: Common spatial correlation revealed as a hidden rule, Phys Rev B, 99, 10.1103/PhysRevB.99.014115
Wei, 2019, Assessing the utility of structure in amorphous materials, J Chem Phys, 150, 10.1063/1.5064531
Zemp, 2014, Icosahedral superclusters inCu64Zr36metallic glass, Phys Rev B, 90, 10.1103/PhysRevB.90.144108
Derlet, 2020, Emergent structural length scales in a model binary glass - The micro-second molecular dynamics time-scale regime, J Alloys Compd, 821, 10.1016/j.jallcom.2019.153209
Ryltsev, 2016, Cooling rate dependence of simulated Cu64.5Zr35.5 metallic glass structure, J Chem Phys, 145, 10.1063/1.4958631
Ke, 2014, Structure heterogeneity in metallic glass: modeling and experiment, J Mater Sci Technol, 30, 560, 10.1016/j.jmst.2013.11.014
Ling, 2018, Probe embryonic damage evolution in bulk metallic glasses under plate-impact loading, EPJ Web Conf, 183, 10.1051/epjconf/201818303013
Tang, 2020, Lognormal Distribution of Local Strain: A Universal Law of Plastic Deformation in Material, Phys Rev Lett, 124, 10.1103/PhysRevLett.124.155501
Lu, 2016, Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass, Sci Rep, 6, 29357, 10.1038/srep29357
Yang, 2012, Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy, Acta Mater, 60, 5260, 10.1016/j.actamat.2012.06.025
Plimpton, 1995, Fast parallel algorithms for short-range molecular dynamics, J Comput Phys, 117, 1, 10.1006/jcph.1995.1039
Egami, 2003
Angell, 1995, Formation of glasses from liquids and biopolymers, Science, 267, 1924, 10.1126/science.267.5206.1924
Buchholz, 2002, Cooling rate dependence of the glass transition temperature of polymer melts: Molecular dynamics study, J Chem Phys, 117, 7364, 10.1063/1.1508366
Li, 2018, Effects of cooling rate on the atomic structure of Cu64Zr36 binary metallic glass, Comput Mater Sci, 141, 59, 10.1016/j.commatsci.2017.09.026
Sanditov, 2017, On relaxation nature of glass transition in amorphous materials, Physica B, 523, 96, 10.1016/j.physb.2017.08.025
Sentjabrskaja, 2015, Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities, Sci Rep, 5, 11884, 10.1038/srep11884
Fan, 2014, Evolution of elastic heterogeneity during aging in metallic glasses, Phys Rev E Stat Nonlin Soft Matter Phys, 89, 10.1103/PhysRevE.89.062313
Plancherel, 1910, Contribution à ľétude de la représentation d'une fonction arbitraire par des intégrales définies, Rendiconti del Circolo Matematico di Palermo (1884-1940), 30, 289, 10.1007/BF03014877
Liu, 2020, Deformation-enhanced hierarchical multiscale structure heterogeneity in a Pd-Si bulk metallic glass, Acta Mater, 200, 42, 10.1016/j.actamat.2020.08.077
Chen, 2015, Fractal atomic-level percolation in metallic glasses, Science, 349, 1306, 10.1126/science.aab1233
Cheng, 2009, Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition, Acta Mater, 57, 3253, 10.1016/j.actamat.2009.03.027
M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids, Annual review of physical chemistry, 51 (2000) 99-128.
Cheng, 2008, Indicators of internal structural states for metallic glasses: Local order, free volume, and configurational potential energy, Appl Phys Lett, 93, 10.1063/1.2966154
Wakeda, 2019, Heterogeneous structural changes correlated to local atomic order in thermal rejuvenation process of Cu-Zr metallic glass, Sci Technol Adv Mater, 20, 632, 10.1080/14686996.2019.1624140
Saida, 2017, Thermal rejuvenation in metallic glasses, Sci Technol Adv Mater, 18, 152, 10.1080/14686996.2017.1280369
Liu, 2011, Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy, Phys Rev Lett, 106, 10.1103/PhysRevLett.106.125504
Tsai, 2017, Hierarchical heterogeneity and an elastic microstructure observed in a metallic glass alloy, Acta Mater, 139, 11, 10.1016/j.actamat.2017.07.061
Zhu, 2018, Spatial heterogeneity as the structure feature for structure-property relationship of metallic glasses, Nat Commun, 9, 3965, 10.1038/s41467-018-06476-8
Xue, 2013, Characterization of flow units in metallic glass through density variation, J Appl Phys, 114, 10.1063/1.4823816
Zhao, 2020, Reversible and irreversible β-relaxations in metallic glasses, Phys Rev B, 101, 10.1103/PhysRevB.101.094203
Derlet, 2021, Micro-plasticity in a fragile model binary glass, Acta Mater, 209
Zhu, 2021, A new continuum model for viscoplasticity in metallic glasses based on thermodynamics and its application to creep tests, J Mech Phys Solids, 146, 10.1016/j.jmps.2020.104216
Jiang, 2009, On the origin of shear banding instability in metallic glasses, J Mech Phys Solids, 57, 1267, 10.1016/j.jmps.2009.04.008
Jiang, 2015, Origin of stress overshoot in amorphous solids, Mech Mater, 81, 72, 10.1016/j.mechmat.2014.10.002
Derlet, 2018, Thermally-activated stress relaxation in a model amorphous solid and the formation of a system-spanning shear event, Acta Mater, 143, 205, 10.1016/j.actamat.2017.10.020
Wisitsorasak, 2012, On the strength of glasses, Proc Natl Acad Sci U S A, 109, 16068, 10.1073/pnas.1214130109
Trachenko, 2011, Heat capacity at the glass transition, Phys Rev B, 83, 10.1103/PhysRevB.83.014201
Jiang, 2007, Intrinsic correlation between fragility and bulk modulus in metallic glasses, Phys Rev B, 76, 10.1103/PhysRevB.76.054204
Liu, 2009, Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength, Phys Rev Lett, 103, 10.1103/PhysRevLett.103.065504
S. Song, F. Zhu, M. Chen, Universal Scaling Law of Glass Rheology, arXiv preprint arXiv:.10991, (2020).
Fan, 2017, Effects of cooling rate on particle rearrangement statistics: Rapidly cooled glasses are more ductile and less reversible, Phys Rev E, 95, 10.1103/PhysRevE.95.022611
Yuan, 2020, Intrinsic and extrinsic effects on the brittle-to-ductile transition in metallic glasses, J Appl Phys, 128, 10.1063/5.0020201
Kamrin, 2014, Two-temperature continuum thermomechanics of deforming amorphous solids, J Mech Phys Solids, 73, 269, 10.1016/j.jmps.2014.09.009
Budrikis, 2017, Universal features of amorphous plasticity, Nat Commun, 8, 15928, 10.1038/ncomms15928
Liu, 2018, Elastic Fluctuations and Structural Heterogeneities in Metallic Glasses, Adv Funct Mater, 28
Ma, 2016, Tailoring structural inhomogeneities in metallic glasses to enable tensile ductility at room temperature, Mater Today, 19, 568, 10.1016/j.mattod.2016.04.001
Greer, 2013, Shear bands in metallic glasses, Mater Sci Eng, 74, 71, 10.1016/j.mser.2013.04.001
Zhang, 2006, Thickness of shear bands in metallic glasses, Appl Phys Lett, 89
Inoue, 1998, High packing density of Zr-and Pd-based bulk amorphous alloys, Mater Trans JIM, 39, 318, 10.2320/matertrans1989.39.318
Harms, 2003, Effects of plastic deformation on the elastic modulus and density of bulk amorphous Pd40Ni10Cu30P20, J Non Cryst Solids, 317, 200, 10.1016/S0022-3093(02)02010-0