Correlations between space weather parameters during intense geomagnetic storms: Analytical study
Tài liệu tham khảo
Abe, 2022, Statistical analysis of the occurrence rate of geomagnetic storms during solar cycles 20–24, Adv. Space Res.
Arnoldy, R.L., 1971. Signature in the interplanetary medium for substorms. J. Geophys. Res. (1896–1977), 76(22), 5189–5201. https://doi.org/10.1029/JA076i022p05189. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA076i022p05189, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/JA076i022p05189.
Bakare, 2010, Relationship between dst and solar wind conditions during intense geomagnetic storms, Indian J. Radio Space Phys., 39, 150
Benz, 2017, Flare Observations, Living Rev. Sol. Phys., 14, 2, 10.1007/s41116-016-0004-3
Bocchialini, 2018, Statistical analysis of solar events associated with storm sudden commencements over one year of solar maximum during cycle 23: propagation from the sun to the earth and effects, Sol. Phys., 293, 75, 10.1007/s11207-018-1278-5
Burton, 1975, An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204, 10.1029/JA080i031p04204
Cane, 2003, Interplanetary coronal mass ejections in the near-earth solar wind during 1996–2002, J. Geophys. Res.: Space Phys., 108, 10.1029/2002JA009817
Chen, 2011, Coronal mass ejections: models and their observational basis, Living Rev. Sol. Phys., 8, 1
Desai, 2016, Large gradual solar energetic particle events, Living Rev. Sol. Phys., 13, 10.1007/s41116-016-0002-5
Dungey, 1961, Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett, 6, 47, 10.1103/PhysRevLett.6.47
Echer, 2011, Statistical studies of geomagnetic storms with peak Dst≤-50 nT from 1957 to 2008, J. Atmos. Solar Terr. Phys., 73, 1454, 10.1016/j.jastp.2011.04.021
Echer, E., Gonzalez, W.D., Tsurutani, B.T. et al., 2008. Interplanetary conditions causing intense geomagnetic storms (dst ≤ -100 nt) during solar cycle 23 (1996–2006). J. Geophys. Res.: Space Phys. 113(A5). https://doi.org/10.1029/2007JA012744. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007JA012744, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007JA012744.
Fernandez-Gomez, 2022, Improving estimates of the ionosphere during geomagnetic storm conditions through assimilation of thermospheric mass density, Earth, Planets Space, 74, 121, 10.1186/s40623-022-01678-3
Fletcher, 2011, An observational overview of solar flares, Space Sci. Rev., 159, 19, 10.1007/s11214-010-9701-8
Gopalswamy, 2008, Solar connections of geoeffective magnetic structures, J. Atmos. Solar Terr. Phys., 70, 2078, 10.1016/j.jastp.2008.06.010
Gopalswamy, N., 2012. Energetic particle and other space weather events of solar cycle 24. In: Hu, Q., Li, G., Zank, G.P., Ao, X., Verkhoglyadova, O., Adams, J.H. (Eds.), Space Weather: the Space Radiation Environment: 11th Annual International AstroPhysics Conference, volume 1500 of American Institute of Physics Conference Series, pp. 14–19, https://doi.org/10.1063/1.4768738. arXiv:1208.3951.
Gopalswamy, N., 2017. Extreme Solar Eruptions and their Space Weather Consequences. arXiv e-prints, p. arXiv:1709.03165. https://doi.org/10.48550/arXiv.1709.03165. arXiv:1709.03165.
Gopalswamy, N. (2022). The Sun and Space Weather. Atmosphere, 13(11), 1781. doi:10.3390/atmos13111781. arXiv:2211.06775.
Gopalswamy, 2008, Solar sources and geospace consequences of interplanetary magnetic clouds observed during solar cycle 23, J. Atmos. Solar Terr. Phys., 70, 245, 10.1016/j.jastp.2007.08.070
Gopalswamy, 2022, What is unusual about the third largest geomagnetic storm of solar cycle 24?, J. Geophys. Res. (Space Phys.), 127, e30404
Gopalswamy, N., Yashiro, S., Xie, H. et al., 2015. Properties and geoeffectiveness of magnetic clouds during solar cycles 23 and 24. J. Geophys. Res.: Space Phys. 120(11), 9221–9245. https://doi.org/10.1002/2015JA021446, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021446. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2015JA021446.
Gosling, J.T., Bame, S.J., McComas, D.J. et al., 1990. Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 17(7), 901–904. https://doi.org/10.1029/GL017i007p00901. URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GL017i007p00901, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/GL017i007p00901.
Gupta, 2015, Relationship of dst with solar flares and coronal mass ejections during intense geomagnetic storms, Indian J. Appl. Res., 5, 197
Huang, 2016, Ionosphere-thermosphere (IT) response to solar wind forcing during magnetic storms, J. Space Weather Space Climate, 6, A4, 10.1051/swsc/2015041
Kane, R.P., 2005. How good is the relationship of solar and interplanetary plasma parameters with geomagnetic storms? J. Geophys. Res.: Space Phys. 110(A2). https://doi.org/10.1029/2004JA010799, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004JA010799. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004JA010799.
Khalil, 2016, Effect of air drag force on low earth orbit satellites during maximum and minimum solar activity, Space Res. J., 9, 1, 10.3923/srj.2016.1.9
Kilpua, E., Lugaz, N., Mays, M.L. et al., 2019. Forecasting the structure and orientation of earthbound coronal mass ejections. Space Weather, 17(4), 498–526. https://doi.org/10.1029/2018SW001944, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018SW001944, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018SW001944.
Klein, 2017, Acceleration and propagation of solar energetic particles, Space Sci. Rev., 212, 1107, 10.1007/s11214-017-0382-4
Luza, 2022, Impact of atmospheric and space radiation on sensitive electronic devices, 1
Mansilla, 2008, Solar wind and IMF parameters associated with geomagnetic storms with Dst < - 50 nT, Phys. Scr., 78, 045902, 10.1088/0031-8949/78/04/045902
Miteva, 2020, On extreme space weather events: Solar eruptions, energetic protons and geomagnetic storms, Adv. Space Res., 66, 1977, 10.1016/j.asr.2020.07.006
Miteva, 2018, The Wind/EPACT proton event catalog (1996–2016), Sol. Phys., 293, 27, 10.1007/s11207-018-1241-5
Oliveira, 2019, Satellite orbital drag during magnetic storms, Space Weather, 17, 1510, 10.1029/2019SW002287
Pokharia, 2018, Study of geomagnetic storms and solar and interplanetary parameters for solar cycles 22 and 24, Sol. Phys., 293, 126, 10.1007/s11207-018-1345-y
Pulkkinen, 2007, Space weather: terrestrial perspective, Living Rev. Sol. Phys., 4, 1
Rathore, 2015, Effect of solar wind plasma parameters on space weather, Res. Astron. Astrophys., 15, 85, 10.1088/1674-4527/15/1/009
Richardson, 2010, Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties, Sol. Phys., 264, 189, 10.1007/s11207-010-9568-6
Richardson, 2012, Solar wind drivers of geomagnetic storms during more than four solar cycles, J. Space Weather Space Climate, 2, A01
Richardson, 2006, Major geomagnetic storms (Dst < = -100 nT) generated by corotating interaction regions, J. Geophys. Res. (Space Phys.), 111, A07S09, 10.1029/2005JA011476
Riley, P., 2012. On the probability of occurrence of extreme space weather events. Space Weather, 10(2). https://doi.org/10.1029/2011SW000734, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011SW000734, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2011SW000734.
Samwel, 2019, Space radiation impact on smallsats during maximum and minimum solar activity, Adv. Space Res., 64, 239, 10.1016/j.asr.2019.03.025
Samwel, 2008
Samwel, 2021, Catalogue of in situ observed solar energetic electrons from ACE/EPAM instrument, Mon. Not. Roy. Astron. Soc., 505, 5212, 10.1093/mnras/stab1564
Schmieder, B., Kim, R.-S., Grison, B. et al., 2020. Low geo-effectiveness of fast halo cmes related to the 12 x-class flares in 2002. J. Geophys. Res.: Space Phys. 125(6), e2019JA027529. https://doi.org/10.1029/2019JA027529, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JA027529, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JA027529.E2019JA027529.
Schwenn, 2006, Space weather: the solar perspective, Living Rev. Sol. Phys., 3, 2
Somaïla, 2022, Solar wind and geomagnetic activity during two antagonist solar cycles: Comparative study between the solar cycles 23 and 24, Int. J. Phys. Sci., 17, 57, 10.5897/IJPS2022.4998
Subedi, A., Adhikari, B., Mishra, R.K., 2017. Variation of solar wind parameters during intense geomagnetic storms. Himalayan Phys. 6, 80–85. https://doi.org/10.3126/hj.v6i0.18366, URL: https://www.nepjol.info/index.php/HP/article/view/18366.
Titus, 2013, An updated perspective of single event gate rupture and single event burnout in power MOSFETs, IEEE Trans. Nucl. Sci., 60, 1912, 10.1109/TNS.2013.2252194
Vasanth, 2013, Statistical study on dh cmes and its geoeffectiveness, ISRN Astron. Astrophys., 15
Verbanac, 2011, Solar wind high-speed streams and related geomagnetic activity in the declining phase of solar cycle 23, Astron. Astrophys., 533, A49, 10.1051/0004-6361/201116615
Verbanac, 2013, Comparison of geoeffectiveness of coronal mass ejections and corotating interaction regions, Astron. Astrophys., 558, A85, 10.1051/0004-6361/201220417
Wang, 2003, Influence of the solar wind dynamic pressure on the decay and injection of the ring current, J. Geophys. Res. (Space Phys.), 108, 1341, 10.1029/2003JA009851
Watari, 2017, Geomagnetic storms of cycle 24 and their solar sources, Earth, Planets Space, 69, 70, 10.1186/s40623-017-0653-z
Webb, 2012, Coronal mass ejections: observations, Living Rev. Sol. Phys., 9, 3
Wu, 2002, Effect of solar wind velocity on magnetic cloud-associated magnetic storm intensity, J. Geophys. Res. (Space Phys.), 107, 1346, 10.1029/2002JA009396
Xie, H., Gopalswamy, N., St. Cyr, O.C. et al., 2008. Effects of solar wind dynamic pressure and preconditioning on large geomagnetic storms. Geophys. Res. Lett. 35(6). https://doi.org/10.1029/2007GL032298, URL: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007GL032298, arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2007GL032298.
Yacouba, 2022, Factors of geomagnetic storms during the solar cycles 23 and 24: A comparative statistical study, Sci. Res. Essays, 17, 46, 10.5897/SRE2022.6751
Yashiro, 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft, J. Geophys. Res. (Space Phys.), 109, A07105, 10.1029/2003JA010282
Zhang, 2007, Solar and interplanetary sources of major geomagnetic storms (Dst ≤ -100 nT) during 1996–2005, J. Geophys. Res. (Space Phys.), 112, A10102, 10.1029/2007JA012321